上一篇文章聊了聊基于PAX的混合存储结构的RCFile,其实这里笔者还了解一些八卦,RCfile的主力团队都是来自中科院的童鞋在Facebook完成的,算是一个由华人主导的编码项目.但是RCfile仍然存在一些缺陷,后续被HortonWorks盯上之后上马了ORCFile格式,而老对头Cloudera则紧抱Google大腿推出了Parquet格式. 其实二者需要解决的问题是殊途同归的,但是不同的爹似乎导致了不太相同的命运.这篇文章,我们主要还是聊聊两者的技术细节,再穿插一些开源圈的商业八卦~~~…
前段时间一直在忙碌写毕设与项目的事情,很久没有写一些学习心得与工作记录了,开了一个新的坑,希望能继续坚持写作与记录分布式存储相关的知识.为什么叫小视角呢?因为属于随想型的内容,可能一个由小的视角来审视海量数据的存储与计算技术,把知识点分为两到三章来梳理.管中窥豹,可见一斑,希望能利用这个过程提高自己,也欢迎阅读的朋友多指正. 第一章先从Facebook的一篇论文<RCFile: A Fast and Space-efficient Data Placement Structure in MapR…
连续两篇文章都聊了不同的存储格式,这篇我们继续深入来看看在存储格式的演变之上有什么新的"黑科技".华为公司在2016年开源了类parquet的列存格式:CarbonData,并且贡献给了Apache社区.CarbonData仅仅用了不到一年的时间就成功毕业,成为了Apache社区的顶级项目,CarbonData是首个由华人公司主导的Apache顶级项目,(来源自eBay的Kylin算是首个由华人主导的顶级开源项目)笔者这里还是要向华为的小伙伴们致敬,能够完成这样一个从0到1的突破. 本…
这个系列文章之前因为私事荒废了很久,继续更新--之前与老大谈论架构时,老大和我聊了聊分布式数据处理之中的Lambda结构,之前在<Designing Data-Intensive Applications>这本书之中,作者 Martin Kleppmann也在文中涉及到了通过重型批处理与灵活的流处理相结合的方式来构建分布式计算系统.所以这次也是借这个机会重新梳理Lambda架构与后续由Jay Kreps提出改进的Kappa架构,结合个人对于数据系统的思考,展开聊一聊分布式计算系统的一些设计思路…
笔者目前开发运维的存储系统的服务器都跑在SSD之上,目前单机服务器最大的SSD容量有4T之多.(公司好有钱,以前在实验室都只有机械硬盘用的~~)但SSD本身的特性与机械硬盘差距较大,虽然说在性能上有诸多优势,但是如果使用的方式方法不对,反而会事倍功半.所以笔者花时间调研了一下固态硬盘的结构与特性,并且总结了一些避免SSD写放大性能下降的法则,希望对大家有所帮助~~ 1.SSD的写放大 首先我们来看看什么是写放大,写放大(Write amplification)是2008年,由英特尔和Silico…
Hive是一个数据仓库基础工具在Hadoop中用来处理结构化数据.它架构在Hadoop之上,总归为大数据,并使得查询和分析方便.并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行. 术语“大数据”是大型数据集,其中包括体积庞大,高速,以及各种由与日俱增的数据的集合.使用传统的数据管理系统,它是难以加工大型数据.因此,Apache软件基金会推出了一款名为Hadoop的解决大数据管理和处理难题的框架. 安装mysql http://www.centoscn.com/my…
编程规范 (1)用户编写的程序分成三个部分:Mapper,Reducer,Driver(提交运行mr程序的客户端) (2)Mapper的输入数据是KV对的形式(KV的类型可自定义) (3)Mapper的输出数据是KV对的形式(KV的类型可自定义) (4)Mapper中的业务逻辑写在map()方法中 (5)map()方法(maptask进程)对每一个<K,V>调用一次 (6)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV (7)Reducer的业务逻辑写在reduce()方…
切入正题前,先做个自我介绍. 本人是从业三年的大数据小码农一枚,在帝都一家有点名气的广告公司工作,同时兼着大数据管理员的职责. 平时主要的工作是配合业务部门,做各种广告大数据计算分析工作,然后制成各种图表,提供给领导和客户,做为他们业务决策的辅助依据. 因为敏感性和安全的原因,我们的广告数据都是保存在公司自己的服务器里,而不是云上,并且做了各种隔离,防止有人盗取.大数据平台用的是目前流行的OpenStack + Hadoop谱系组合. 这套软件组合虽然时不时给我出点难题,但是好在部门里还有两位技…
OLAPCube是一种典型的多维数据分析技术,Cube本身可以认为是不同维度数据组成的dataset,一个OLAP Cube 可以拥有多个维度(Dimension),以及多个事实(Factor Measure).用户通过OLAP工具从多个角度来进行数据的多维分析.通常认为OLAP包括三种基本的分析操作:上卷(rollup).下钻(drilldown).切片切块(slicingand dicing),原始数据经过聚合以及整理后变成一个或多个维度的视图. ROLAP 以关系模型的方式存储用作多维分析…
很多人问阿里的飞天大数据平台.云梯2.MaxCompute.实时计算到底是什么,和自建Hadoop平台有什么区别. 先说Hadoop 什么是Hadoop? Hadoop是一个开源.高可靠.可扩展的分布式大数据计算框架系统,主要用来解决海量数据的存储.分析.分布式资源调度等.Hadoop最大的优点就是能够提供并行计算,充分利用集群的威力进行高速运算和存储. Hadoop的核心有两大板块:HDFS和MapReduce. HDFS全称Hadoop Distributed File System,是一种…
OLAP(On-Line Analytical Processing),是数据仓库系统的主要应用形式,帮助分析人员多角度分析数据,挖掘数据价值.本文基于QQ音乐海量大数据实时分析场景,通过QQ音乐与腾讯云EMR产品深度合作的案例解读,还原一个不一样的大数据云端解决方案. 一.背景介绍 ​ QQ音乐是腾讯音乐旗下一款领先的音乐流媒体产品,平台打造了“听.看.玩”的立体泛音乐娱乐生态圈,为累计注册数在8亿以上的用户提供多元化音乐生活体验,畅享平台上超过3000万首歌曲的海量曲库.优质服务的背后,是每…
分类 当前措施 说明 百度竞价如何进行数据分析(SEM工程师)数据来源: 1. 百度后台推广数据:api 总展现 总点击 点击率 总消费 点击均价 BDP功能点 1. 串联百度->网站商务通->预约系统 2. 多维度报表 3. 对比报表 4. 钻取功能 2. 在线对话数据: 在线对话数 对话发起率 客户名片数 客户民片成本 网页转化率 3. 市场业务数据: 业务成交数 销售转化率 平均成交成本 总营收 ROI 目前效果值?ROI 投资回报率报告:效果分析 目前:与HIS对接,手工导出导入的数据…
1.Spark介绍 Spark是起源于美国加州大学伯克利分校AMPLab的大数据计算平台,在2010年开源,目前是Apache软件基金会的顶级项目.随着 Spark在大数据计算领域的暂露头角,越来越多的企业开始关注和使用.2014年11月,Spark在Daytona Gray Sort 100TB Benchmark竞赛中打破了由Hadoop MapReduce保持的排序记录.Spark利用1/10的节点数,把100TB数据的排序时间从72分钟提高到了23分钟. Spark在架构上包括内核部分和…
前言: 好吧我承认已经有四年多没有更新博客了.... 在这四年中发生了很多事情,换了工作,换了工作的方向.在工作的第一年的时候接触机器学习,从那之后的一年非常狂热的学习机器学习的相关技术,也写了一些自己的理解和感悟.今天大概看了一下这个博客的总体阅读人数已经有70多万了,印象中之前还只有十多二十万.很高兴这些文章能够帮助你更好的理解一些机器学习相关的基础知识,非常感谢各位读者和爬虫机器人(:-p)的支持! 后来个人选择将工作的方向从机器学习换到了Hadoop相关领域,中间有很多感悟我想之后再单独…
1.Spark介绍 Spark是起源于美国加州大学伯克利分校AMPLab的大数据计算平台,在2010年开源,目前是Apache软件基金会的顶级项目.随着Spark在大数据计算领域的暂露头角,越来越多的企业开始关注和使用.2014年11月,Spark在Daytona Gray Sort 100TB Benchmark竞赛中打破了由Hadoop MapReduce保持的排序记录.Spark利用1/10的节点数,分钟提高到了分钟. Spark在架构上包括内核部分和4个官方子模块--Spark SQL.…
作业要求:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3161 4.简述Hadoop平台的起源.发展历史与应用现状. 列举发展过程中重要的事件.主要版本.主要厂商: 国内外Hadoop应用的典型案例. Hadoop发展史 一.重要的事件: 2004年——— 最初的版本(现在称为HDFS和MapReduce)由Doug Cutting和Mike Cafarella开始实施. 2005年12月——— Nutch移植到新的框架,Had…
一.Parquet的组成 Parquet仅仅是一种存储格式,它是语言.平台无关的,并且不需要和任何一种数据处理框架绑定,目前能够和Parquet适配的组件包括下面这些,可以看出基本上通常使用的查询引擎和计算框架都已适配,并且可以很方便的将其它序列化工具生成的数据转换成Parquet格式. 查询引擎: Hive, Impala, Pig, Presto, Drill, Tajo, HAWQ, IBM Big SQL 计算框架: MapReduce, Spark, Cascading, Crunch…
一.Parquet的组成 Parquet仅仅是一种存储格式,它是语言.平台无关的,并且不需要和任何一种数据处理框架绑定,目前能够和Parquet适配的组件包括下面这些,可以看出基本上通常使用的查询引擎和计算框架都已适配,并且可以很方便的将其它序列化工具生成的数据转换成Parquet格式. 查询引擎: Hive, Impala, Pig, Presto, Drill, Tajo, HAWQ, IBM Big SQL 计算框架: MapReduce, Spark, Cascading, Crunch…
1. 读取数据库的形式创建DataFrame DataFrameFromJDBC object DataFrameFromJDBC { def main(args: Array[String]): Unit = { // 创建SparkSession实例 val spark: SparkSession = SparkSession.builder() .appName(this.getClass.getSimpleName) .master("local[*]") .getOrCrea…
6.3 突破传统,4k大屏的沉浸式体验 前言 能够在 4K 的页面上表演,对设计师和前端开发来说,即是机会也是挑战,我们可以有更大的空间设计宏观的场景,炫酷的转场,让观众感受影院式视觉体验,但是,又必须面对因为画布变大带来的性能问题,以及绞尽脑汁实现很多天马行空的的想法.下面是这次双11媒体大屏开发中我们的一些设计和思路. 1. 3D动感跑道 当逍遥子零点倒数5,4,3,2,1,0!激昂音乐奏起,媒体中心大屏幕跳跃出一个动感十足的页面,黄橙橙的 GMV 数字蹭蹭往上长,跳跃的翻牌器下有个不断向前…
Java在处理大数据的时候一些小技巧 发布时间:2013-05-09 00:00:00 来源:中国IT实验室 作者:佚名   关键字:Java 众所周知,java在处理数据量比较大的时候,加载到内存必然会导致内存溢出,而在一些数据处理中我们不得不去处理海量数据,在做数据处理中,我们常见的手段是分解,压缩,并行,临时文件等方法; 例如,我们要将数据库(不论是什么数据库)的数据导出到一个文件,一般是Excel或文本格式的CSV;对于Excel来讲,对于POI和JXL的接口,你很多时候没有办法去控制内…
4.大表join小表优化 和join相关的优化主要分为mapjoin可以解决的优化(即大表join小表)和mapjoin无法解决的优化(即大表join大表),前者相对容易解决,后者较难,比较麻烦. 首先介绍大表join小表优化.以销售明细表为例来说明大表join小表的场景. 假如供应商进行评级,比如(五星.四星.三星.二星.一星),此时因为人员希望能够分析各供应商星级的每天销售情况及其占比. 开发人员一般会写出如下SQL: select  seller_star, count(order_id)…
"大中台.小前台”新架构下,阿里大数据接下来怎么玩?_炬鼎力_新浪博客 http://blog.sina.com.cn/s/blog_1427354e00102vzyq.html "大中台.小前台”新架构下,阿里大数据接下来怎么玩?  此博文包含图片(2016-01-05 11:39:50)转载▼ [淘宝大学]阿里巴巴上周宣布“大中台.小中台”组织新架构后,阿里大数据接下来怎么玩,成为各界关注的焦点.12月15日,阿里大数据团队首次公开亮相,对阿里未来大数据策略进行解读,并宣布首个商家…
@ 目录 概述 定义 背景 特点 架构 关键技术 应用场景 安装 单台部署 集群部署 命令行接口 连接器 MySQL连接器 ClickHouse连接器 概述 定义 openLooKeng 官网地址 https://openlookeng.io openLooKeng 官网中文文档 https://docs.openlookeng.io/zh/docs/docs/overview.html openLooKeng GitHub源码地址 https://github.com/openlookeng…
大数据技术的发展是一个非常典型的技术工程的发展过程,荣辛通过对于谷歌经典论文的盘点,希望可以帮助工程师们看到技术的探索.选择过程,以及最终历史告诉我们什么是正确的选择. 何为大数据   "大数据"这个名字流行起来到现在,差不多已经有十年时间了.在这十年里,不同的人都按照自己的需要给大数据编出了自己的解释.有些解释很具体,来自于一线写 Java 代码的工程师,说用 Hadoop 处理数据就是大数据:有些解释很高大上,来自于市场上靠发明大词儿为生的演说家,说我们能采集和处理全量的数据就是大…
100 open source Big Data architecture papers for data professionals. 读完这100篇论文 就能成大数据高手 作者 白宁超 2016年4月16日13:38:49 摘要:本文基于PayPal高级工程总监Anil Madan写的大数据文章,其中涵盖100篇大数据的论文,涵盖大数据技术栈(数据存储层.键值存储.面向列的存储.流式.交互式.实时系统.工具.库等),全部读懂你将会是大数据的顶级高手.作者通过引用Anil Madan原文和CS…
原文地址 开源(Open Source)对大数据影响,有二:一方面,在大数据技术变革之路上,开源在众人之力和众人之智推动下,摧枯拉朽,吐故纳新,扮演着非常重要的推动作用:另一方面,开源也给大数据技术构建了一个异常复杂的生态系统.每一天,都有一大堆"新"框架."新"类库或"新"工具涌现,乱花渐欲"迷"人眼.为了掌控住这些"新玩意",数据分析的达人们不得不"殚精竭虑"地"学而时习之…
第1章 Hive基本概念 1.1 什么是Hive Hive:由Facebook开源用于解决海量结构化日志的数据统计. Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能. 本质是:将HQL转化成MapReduce程序 1)Hive处理的数据存储在HDFS 2)Hive分析数据底层的实现是MapReduce 3)执行程序运行在Yarn上 1.2 Hive的优缺点 1.2.1 优点 1) 操作接口采用类SQL语法,提供快速开发的能力(简单.容易上…
背景 随着大数据时代的到来,Hadoop在过去几年以接近统治性的方式包揽的ETL和数据分析查询的工作,大家也无意间的想往大数据方向靠拢,即使每天数据也就几十.几百M也要放到Hadoop上作分析,只会适得其反,但是当面对真正的Big Data的时候,Hadoop就会暴露出它对于数据分析查询支持的弱点.甚至出现<MapReduce: 一个巨大的倒退>此类极端的吐槽,这也怪不得Hadoop,毕竟它的设计就是为了批处理,使用用MR的编程模型来实现SQL查询,性能肯定不如意.所以通常我也只是把Hive当…
本文来自:http://blog.csdn.net/yu616568/article/details/52431835 如有侵权 可立即删除 背景 随着大数据时代的到来,Hadoop在过去几年以接近统治性的方式包揽的ETL和数据分析查询的工作,大家也无意间的想往大数据方向靠拢,即使每天数据也就几十.几百M也要放到Hadoop上作分析,只会适得其反,但是当面对真正的Big Data的时候,Hadoop就会暴露出它对于数据分析查询支持的弱点.甚至出现<MapReduce: 一个巨大的倒退>此类极端…