Sample Input 2 5 10 Sample Output Prime 2 模板学习: 判断是否是素数,数据很大,所以用miller,不是的话再用pollard rho分解 miller : 通过费马小定理,若N为素数,a^(N-1) = 1 (mod N), 再利用二次判定: 若x为素数,0<x<p, x*x = 1(mod q) #include <cstdio> #include <cstring> #include <iostream> #i…
数据范围很大,用米勒罗宾测试和Pollard_Rho法可以分解大数. 模板在代码中 O.O #include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> using namespace std; __int64 pri[]= {,,,,,,,,,,};//用小素数表做随机种子避免第一类卡米歇尔数的误判 __int64 mul…
题意:给你一个数n,  定义m=2k-1,   {k|1<=k<=n},并且 k为素数;  当m为合数时,求分解为质因数,输出格式如下:47 * 178481 = 8388607 = ( 2 ^ 23 ) - 1 分析:要分解m,首先要判断m是否为合数,直接用米勒拉宾判断,但是后面的大合数分解,一开始用了试除法,直接给超时.所以,有更加快速的方法.(现学的).使用Pollard_Rho大数分解算法. Pollard_Rho大数分解时间复杂度为n1/4  ac代码: #include <c…
题意: 给你一个数n(n <= 2^54),判断n是不是素数,如果是输出Prime,否则输出n最小的素因子 解题思路: 自然数素性测试可以看看Matrix67的  素数与素性测试 素因子分解利用的是Pollard rho因数分解,可以参考 Pollard rho因数分解 存个代码~ /* ********************************************** Author : JayYe Created Time: 2013-9-25 16:02:25 File Name…
素数判定Miller_Rabin算法详解: http://blog.csdn.net/maxichu/article/details/45458569 大数因数分解Pollard_rho算法详解: http://blog.csdn.net/maxichu/article/details/45459533 然后是参考了kuangbin的模板: http://www.cnblogs.com/kuangbin/archive/2012/08/19/2646396.html 模板如下: //快速乘 (a…
Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 27129   Accepted: 6713 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the…
题目链接 Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N…
/* 题目:给出一个数 如果是prime 输出prime 否则输出他的最小质因子 Miller Rabin +Poller Rho 大素数判定+大数找质因子 后面这个算法嘛 基于Birthday Paradox 简单点说就是 在 1到100 内去一个数 ai ai==42的概率很小 但是如果取两个数 ai bi ai-bi==42 的概率就会变大 应用到找素因子上 就不用像试除法那样一个一个的试 但是如果枚举ai bi 显然也很slow 那么有一个非常好使(奇怪)的函数 f(x)=x*x+c 这…
POJ1811 给一个大数,判断是否是素数,如果不是素数,打印出它的最小质因数 随机素数测试(Miller_Rabin算法) 求整数素因子(Pollard_rho算法) 科技题 #include<cstdlib> #include<cstdio> ; ; int tot; long long n; long long factor[maxn]; long long muti_mod(long long a,long long b,long long c) { //(a*b) mod…
//Accepted 164 KB 422 ms //类似poj2429 大数分解 #include <cstdio> #include <cstring> #include <ctime> #include <time.h> #include <iostream> #include <algorithm> using namespace std; ; __int64 gcd(__int64 a,__int64 b) { ) retu…