Counting rectangles By counting carefully it can be seen that a rectangular grid measuring 3 by 2 contains eighteen rectangles: Although there exists no rectangular grid that contains exactly two million rectangles, find the area of the grid with the…
题意:在二十世纪(1901年1月1日到2000年12月31日)中,有多少个月的1号是星期天? 蔡勒公式:计算 ( year , month , day ) 是星期几 以下图片仅供学习! /************************************************************************* > File Name: euler019.c > Author: WArobot > Blog: http://www.cnblogs.com/WArob…
import datetime count = 0 for y in range(1901,2001): for m in range(1,13): if datetime.datetime(y,m,1).weekday() == 6: count += 1 print count datetime此功能很好用.省去了计算的麻烦. count = 0 days = 1 year = 365 normal = [31,28,31,30,31,30,31,31,30,31,30,31] leap =…
本题来自 Project Euler 第12题:https://projecteuler.net/problem=12 # Project Euler: Problem 12: Highly divisible triangular number # The sequence of triangle numbers is generated by adding the natural numbers. # So the 7th triangle number would be 1 + 2 + 3…
本题来自 Project Euler 第17题:https://projecteuler.net/problem=17 ''' Project Euler 17: Number letter counts If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total. If all th…
本题来自 Project Euler 第2题:https://projecteuler.net/problem=2 # Each new term in the Fibonacci sequence is generated # by adding the previous two terms. # By starting with 1 and 2, the first 10 terms will be: # 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... # By…
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出这道题的人) program 4 A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.…
In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentagonal number, I can only wonder if we have to deal with septagonal numbers in Problem 46. Anyway the problem reads Pentagonal numbers are generated by t…
题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832. 7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319…
本题来自 Project Euler 第21题:https://projecteuler.net/problem=21 ''' Project Euler: Problem 21: Amicable numbers Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a ≠ b…