Spark Mllib逻辑回归算法分析】的更多相关文章

原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3816289.html 本文以spark 1.0.0版本MLlib算法为准进行分析 一.代码结构 逻辑回归代码主要包含三个部分 1.classfication:逻辑回归分类器 2.optimization:优化方法,包含了随机梯度.LBFGS两种算法 3.evaluation:算法效果评估计算…
import org.apache.log4j.{Level, Logger} import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.linalg.Vectors import org.apache.spark.sql.SparkSession /** * 逻辑回归 * Created by zhen on 2018/11/20. */ object LogisticRegr…
导入包 import org.apache.spark.sql.SparkSession import org.apache.spark.sql.Dataset import org.apache.spark.sql.Row import org.apache.spark.sql.DataFrame import org.apache.spark.sql.Column import org.apache.spark.sql.DataFrameReader import org.apache.sp…
package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{BinaryLogisticRegressionSummary, LogisticRegression, LogisticRegressionModel} import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator i…
package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel} import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator import org.apache.spark.ml.feature…
package Spark_MLlib import javassist.bytecode.SignatureAttribute.ArrayType import org.apache.spark.sql.SparkSession import org.apache.spark.ml.{Pipeline, PipelineModel} import org.apache.spark.ml.classification.LogisticRegression import org.apache.sp…
System.setProperty("hadoop.home.dir", "C:\\hadoop-2.7.2"); val spark = SparkSession.builder().config(new SparkConf().setAppName("LR").setMaster("local[*]")).config("spark.sql.warehouse.dir", "file:///…
  http://product.dangdang.com/23829918.html Spark作为新兴的.应用范围最为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相关内容的学习与开发,其中 MLlib是 Spark框架使用的核心.本书是一本细致介绍 Spark MLlib程序设计的图书,入门简单,示例丰富. 本书分为 12章,从 Spark基础安装和配置开始,依次介绍 MLlib程序设计基础.MLlib的数据对象构建.MLlib中 RDD使用介绍,各种分类.聚…
Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多重共线性情况下运行良好. 数学上,ElasticNet被定义为L1和L2正则化项的凸组合: 通过适当设置α,ElasticNet包含L1和L2正则化作为特殊情况.例如,如果用参数α设置为1来训练线性回归模型,则其等价于Lasso模型.另一方面,如果α被设置为0,则训练的模型简化为ridge回归模型.…