#include "cv.h" #include "highgui.h" #include "stdio.h" void main() { IplImage* img = NULL; IplImage* cutImg = NULL; CvMemStorage* storage = cvCreateMemStorage(0); //CvHaarClassifierCascade* cascade = (CvHaarClassifierCascade…
基于Haar特征Adaboost人脸检测级联分类 基于Haar特征Adaboost人脸检测级联分类,称haar分类器. 通过这个算法的名字,我们能够看到这个算法事实上包括了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了. 1        算法要点 Haar分类器 = Haar-like特征 + 积分图方法 + AdaBoost +级联: Haar分类器算法的要点例如以下: a)        使用Haar-like特征做检測. b)       使用积分图…
[1]基础学习笔记之opencv(1):opencv中facedetect例子浅析 http://www.cnblogs.com/tornadomeet/archive/2012/03/22/2411318.html[2]OpenCV学习笔记(二十七)——基于级联分类器的目标检测objdect http://blog.csdn.net/yang_xian521/article/details/6973667[3]Haar+Adaboost实现人头检测 http://blackhuman.blog…
文章目录: OpenCV安装 安装numpy 安装opencv OpenCV使用 OpenCV测试 效果图: 注意: 图片人脸检测 程序要求: 技术实现思路 注意 本文使用的环境是:Windows+Python3.x+Anaconda 安装Python以及Anaconda的步骤本文不予以讲解了,下面主要讲的是OpenCV的安装以及使用. OpenCV安装 安装numpy 如果没有numpy的话要先下载numpy,一般安装完Anaconda后就会自带很多库,这也是我推荐使用Anaconda的原因.…
人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前人脸检测的方法主要有两大类:基于知识和基于统计. 基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根据眼睛.眉毛.嘴巴.鼻子等器官的特征以及相互之间的几何位置关系来检测人脸.主要包括模板匹配.人脸特征.形状与边缘.纹理特性.颜色特征等方法. 基于统计的方法:将人脸看作一个整体的模式——二维像素矩阵,从统计…
[转]40多个关于人脸检测/识别的API.库和软件 http://news.cnblogs.com/n/185616/ 英文原文:List of 40+ Face Detection / Recognition APIs, libraries, and software 译者:@吕抒真 译文:链接 自从谷歌眼镜被推出以来,围绕人脸识别,出现了很多争议.我们相信,不管是不是通过智能眼镜,人脸识别将在人与人交往甚至人与物交互中开辟无数种可能性. 为了帮助研究过程中探索人脸识别,我们列出以下人脸检测和…
英文原文:List of 40+ Face Detection / Recognition APIs, libraries, and software 译者:@吕抒真 译文:链接 自从谷歌眼镜被推出以来,围绕人脸识别,出现了很多争议.我们相信,不管是不是通过智能眼镜,人脸识别将在人与人交往甚至人与物交互中开辟无数种可能性. 为了帮助研究过程中探索人脸识别,我们列出以下人脸检测和识别 API.希望有所帮助! Face Recognition- 拉姆达实验室斯蒂芬弄的.示例代码和图形演示点击 htt…
文章来自于:http://blog.jobbole.com/45936/ 自从谷歌眼镜被推出以来,围绕人脸识别,出现了很多争议.我们相信,不管是不是通过智能眼镜,人脸识别将在人与人交往甚至人与物交互中开辟无数种可能性. 为了帮助研究过程中探索人脸识别,我们列出以下人脸检测和识别API.希望有所帮助! Face Recognition- 拉姆达实验室斯蒂芬弄的.示例代码和图形演示点击http://api.lambdal.com/docs,我们的API提供了面部识别,面部检测,眼睛定位,鼻子定位,嘴…
一.概述 前面一个系列,我们对车牌识别的相关技术进行了研究,但是车牌识别相对来说还是比较简单的,后续本人会对人脸检测.人脸识别,人脸姿态估计和人眼识别做一定的学习和研究.其中人脸检测相对来说比较简单,譬如Dlib库中直接封装了现成的库函数 frontal_face_detector 供相关人员使用,但是Dlib的运行速率并不是很高,另外于仕琪老师的 libfaceDetection 库具有较高的识别率和相对较快的运行速度,具体可以从github 上获取 https://github.com/Sh…
OpenCV是如今最流行的计算机视觉库,而我们今天就是要学习如何安装使用OpenCV,以及如何去访问我们的摄像头.然后我们一起来看看写一个人脸检测程序是如何地简单,简单到只需要几行代码. 在开始之前,我假设你已经对Python有一定的了解.当然,如果你觉得你还不够格,这里有推荐一些学习Python的电子书,你可以先学习下Python,如此可以让你更好地理解接下来的步骤.另外,这里还推荐一本电子书来学习OpenCV. 好,不浪费时间,开始吧. To setup opencv in python e…
一..开发背景 因时势所逼,需要对服务器的文件系统实行监控.虽然linux下有不少入侵检测和防窜改系统,但都比较麻烦,用起来也不是很称手.自己琢磨着也不需要什么多复杂的功能,写个脚本应该就可以满足基本需求.于是整理了一下思路,编写了一个简单的文件完整性检测程序. 二.实现功能 1.能监测多个不同目录中文件的增删改变化. 2.允许监测的特定类型文件,并可根据具体情况设定是否需要生成摘要等. 3.对于变动的文件,新增或修改的可以生成摘要.删除的文件要有日志记录. 4.当监测到文件发生变动时,能生成简…
人脸检测方法有许多,比如opencv自带的人脸Haar特征分类器和dlib人脸检测方法等. 对于opencv的人脸检测方法,优点是简单,快速:存在的问题是人脸检测效果不好.正面/垂直/光线较好的人脸,该方法可以检测出来,而侧面/歪斜/光线不好的人脸,无法检测.因此,该方法不适合现场应用.而对于dlib人脸检测方法采用64个特征点检测,效果会好于opencv的方法识别率会更高,本文会分别采用这几种方法来实现人脸识别.那个算法更好,跑跑代码就知道. 实时图像捕获 首先在进行人脸识别之前需要先来学点O…
http://blog.csdn.net/sunmc1204953974/article/details/49976045 人脸检测 #coding=utf-8 # -*- coding: utf-8 -*- import sys import dlib from skimage import io #使用dlib自带的frontal_face_detector作为我们的特征提取器 detector = dlib.get_frontal_face_detector() #使用dlib提供的图片窗…
浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前的人脸检测方法主要有两大类:基于知识和基于统计. Ø  基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根据眼睛.眉毛.嘴巴.鼻子等器官的特征以及相互之间的几何位置关系来检测人脸. Ø  基于统计的方法:将人脸看作一个整体的模式——二维像素矩…
  AdaBoost 算法是一种快速人脸检测算法,它将根据弱学习的反馈,适应性地调整假设的错误率,使在效率不降低的情况下,检测正确率得到了很大的提高.   系统在技术上的三个贡献: 1.用简单的Haar-like矩形特征作特征,可快速计算 2.基于AdaBoost的分类器设计 3.采用了Cascade(分级分类器)技术提高检测速度 人脸的特征表示方法——Haar-like矩形特征   矩形特征的值是所有白色矩形中点的亮度值的和减去所有灰色矩形中点的亮度值的和,所得到的差 具体特征可以用一个五元组…
很早之前就做过一些关于人脸检测和目标检测的课题,一直都没有好好总结出来,趁着这个机会,写个总结,希望所写的内容能给研究同类问题的博友一些见解和启发!!博客里面涉及的公式太繁琐了,直接截图了. 转载请注明出处:http://www.cnblogs.com/adong7639/p/4194307.html 一 人脸检测之问题概述 人脸检测是CV领域的一个经典课题,很多学者对人脸检测做了深入的研究,但真正的分水岭却是在2001年viola等大神发表的那篇经典之作Rapid Object Detecti…
有了haar特征,有了提升性能的积分图,是不是已经可以很好的解决人脸检测问题了?答案是:no. 因为,计算每一个特征值的时候速度都大幅提升了,但是,一个小小的24*24是人脸图像根据不同的位置, 以及不同的缩放,可以产生超过160,000个特征!这个数量太庞大了,所以肯定要舍弃大量的特征.那么,如何保证使用少量的特征,而又能得到精确的结果呢? 大神永远有解决方法,viola等人使用adaboost来进行分类.声明一下,adaboost并不是viola等人提出的,而是Freund和Schapire…
基于Haar特征的Adaboost级联人脸检测分类器基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了.1        算法要点Haar分类器 = Haar-like特征 + 积分图方法 + AdaBoost +级联:Haar分类器算法的要点如下:a)        使用Haar-like特征做检测.b)       使用积分图(Inte…
原文:照片美妆---基于Haar特征的Adaboost级联人脸检测分类器 本文转载自张雨石http://blog.csdn.net/stdcoutzyx/article/details/34842233 基于Haar特征的Adaboost级联人脸检测分类器 基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了. 1        算法要点 H…
最新版本整理完毕,见: http://face2ai.com/MachineLearning-Haar-like-Adaboost-cascade 0:写在前面的话           写在前面的牢骚话,作为一个非主流工程师,我专业与目前工作都与这些知识相隔十万八千里,所以,我所学习和实现的完全是因为兴趣,目前还研究学习的很浅,谈不上高深,所以还是要继续努力学习.希望和大家多交流,也欢迎伪大牛,假专家板砖伺候,也希望真大牛多指点(真大牛不会啰嗦一堆来显得他知道的多,哈哈),总之,本人还在菜鸟阶段…
原地址:http://blog.csdn.net/celerychen2009/article/details/8839097 人脸检测和人脸识别都是属于典型的机器学习的方法,但是他们使用的方法却相差很大. 对于人脸检测而言,目前最有效的方法仍然是基于Adaboost的方法.在网上可以找到很多关于Adaboost方法的资料,但基本上是千篇一律,没有任何新意.给初学者带了很多不便.建议初学者只需要认真阅读:北京大学 赵楠 的本科毕业论文 :基于 AdaBoost算法的人脸检测 这篇毕业论文就够了.…
"Dlib 是一个现代化的 C ++ 工具包,包含用于创建复杂软件的机器学习算法和工具 " .它使您能够直接在 Python 中运行许多任务,其中一个例子就是人脸检测. 安装 dlib 并不像只做一个 "pip install dlib" 那么简单,因为要正确配置和编译 dlib ,您首先需要安装其他系统依赖项.如果你按照这里描述的步骤,它应该很容易让 dlib 启动并运行.(在本文中,我将介绍如何在 Mac 上安装 dlib ,但如果您使用的是 Ubuntu ,请…
一.物体分类: 这里使用的是caffe官网中自带的例子,我这里主要是对代码的解释~ 首先导入一些必要的库: import caffe import numpy as np import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (10 , 10) #显示图像的最大范围,使用plt.rcParams['savefig.dpi']得到缺省的dpi值为100,则最大的图片范围为1000*10…
import cv2 import matplotlib.pyplot as plt %matplotlib inline # 提取预训练的人脸检测模型,提前下载好的模型 face_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_alt.xml') # 加载彩色(通道顺序为BGR)图像 img = cv2.imread('images/9f510fb30f2442a70a9add3dd143ad4bd01…
在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐从室内演变到室外,从单一限定场景发展到广场.车站.地铁口等场景,人脸检测面临的要求越来越高,比如:人脸尺度多变.数量冗大.姿势多样包括俯拍人脸.戴帽子口罩等的遮挡.表情夸张.化妆伪装.光照条件恶劣.分辨率低甚至连肉眼都较难区分等.在这样复杂的环境下基于Haar特征的人脸检测表现的不尽人意.随着深度学…
一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前的人脸检测方法主要有两大类:基于知识和基于统计. "基于知识的方法主要利用先验知识将人脸看作器官特征的组合,根据眼睛.眉毛.嘴巴.鼻子等器官的特征以及相互之间的几何位置关系来检测人脸.基于统计的方法则将人脸看作一个整体的模式--二维像素矩阵,从统计的观点通过大量人脸图像样本构造人脸模式…
源地址:http://www.thinkface.cn/thread-142-1-1.html 由于工作需要,我开始研究人脸检测部分的算法,这期间断断续续地学习Haar分类器的训练以及检测过程,在这里根据各种论文.网络资源的查阅和对代码的理解做一个简单的总结.我试图概括性的给出算法的起源.全貌以及细节的来龙去脉,但是水平有限,只能解其大概,希望对初学者起到帮助,更主要的是对我个人学习的一次提炼. 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据…
源地址:http://blog.sina.com.cn/s/blog_79b67dfe0102uzra.html 最近需要用到人脸检测,于是找了篇引用广泛的论文实现了一下:Robust Real-Time Face Detection.实现的过程主要有三个步骤:人脸数据准备,算法实现,算法调试.     人脸数据集的准备:网上有很多免费的和付费的.比如这里有个网页介绍了一些常用的人脸数据库.我这里只是人脸检测(不是人脸识别),只要有人脸就可以了,所以我下载了几个数据集,然后把它们混在一起用(后面…
前言: 人脸检測与识别一直是计算机视觉领域一大热门研究方向,并且也从安全监控等工业级的应用扩展到了手机移动端的app.总之随着人脸识别技术获得突破,其应用前景和市场价值都是不可估量的,眼下在学习openCV,自然不能放过这个领域.于是略微了解了下openCV下人脸检測的一些原理.为之后的人脸识别等研究做个小小的铺垫. 原理: 人脸检測属于目标检測(object detection) 的一部分,主要涉及两个方面 先对要检測的目标对象进行概率统计,从而知道待检測对象的一些特征,建立起目标检測模型.…
转载地址http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html 浅析人脸检测之Haar分类器方法  [补充] 这是我时隔差不多两年后, 回来编辑这篇文章加的这段补充, 说实话看到这么多评论很是惊讶, 有很多评论不是我不想回复, 真的是时间久了, 很多细节我都忘记了, 无力回复, 非常抱歉.  我本人并非做CV的, 这两年也都没有再接触CV, 作为一个本科毕业的苦逼码工, 很多理论基础都不扎实, 回顾这篇文章的时候, 我知道其实有很多…