tf.placeholder使用说明】的更多相关文章

tf.placeholder(dtype, shape=None, name=None) placeholder,占位符,在tensorflow中类似于函数参数,运行时必须传入值. dtype:数据类型.常用的是tf.float32,tf.float64等数值类型. shape:数据形状.默认是None,就是一维值,也可以是多维,比如[2,3], [None, 3]表示列是3,行不定. name:名称. 代码片段-1(计算3*4=12) #!/usr/bin/env python # _*_ c…
https://blog.csdn.net/lanchunhui/article/details/61712830 https://www.cnblogs.com/silence-tommy/p/7029561.html 二者的主要区别在于: tf.Variable:主要在于一些可训练变量(trainable variables),比如模型的权重(weights,W)或者偏执值(bias): 声明时,必须提供初始值: 名称的真实含义,在于变量,也即在真实训练时,其值是会改变的,自然事先需要指定初…
1. 使用tf.random_normal([2, 3], mean=-1, stddev=4) 创建一个正态分布的随机数 参数说明:[2, 3]表示随机数的维度,mean表示平均值,stddev表示标准差 代码:生成一个随机分布的值 #1. 创建一个正态分布的随机数 sess = tf.Session() x = tf.random_normal([2, 3], mean=-1, stddev=4) print(sess.run(x)) 2. np.random.shuffle(y) # 对数…
tf.placeholder placeholder( dtype, shape=None, name=None ) 功能说明: 是一种占位符,在执行时候需要为其提供数据 参数列表: 参数名 必选 类型 说明 dtype 是 dtype 占位符数据类型 shape 否 1 维整形张量或 array 占位符维度 name 否 string 占位符名称   #!/usr/bin/python import tensorflow as tf import numpy as np x = tf.plac…
tf.placeholder(dtype, shape=None, name=None) 此函数用于定义过程,在执行的时候再赋具体的值 参数: dtype:数据类型.常用的是tf.float32,tf.float64等数值类型 shape:数据形状.默认是None,就是一维值,也可以多维,比如:[None,3],表示列是3,行不一定 name:名称. 返回: Tensor类型 赋值一般用sess.run(feed_dict = {x:xs, y_:ys}),其中x,y_是用placeholder…
tf.placeholder()函数 Tensorflow中的palceholder,中文翻译为占位符,什么意思呢? 在Tensoflow2.0以前,还是静态图的设计思想,整个设计理念是计算流图,在编写程序时,首先构筑整个系统的graph,代码并不会直接生效,这一点和python的其他数值计算库(如Numpy等)不同,graph为静态的,在实际的运行时,启动一个session,程序才会真正的运行.这样做的好处就是:避免反复地切换底层程序实际运行的上下文,tensorflow帮你优化整个系统的代码…
tf.placeholder(dtype, shape=None, name=None) 此函数可以理解为形参,用于定义过程,在执行的时候再赋具体的值 参数: dtype:数据类型.常用的是tf.float32,tf.float64等数值类型    shape:数据形状.默认是None,就是一维值,也可以是多维,比如[2,3], [None, 3]表示列是3,行不定    name:名称. #coding: utf-8 import tensorflow as tf import numpy a…
1.tf.Variable() tf.Variable(initializer,name) 功能:tf.Variable()创建变量时,name属性值允许重复,检查到相同名字的变量时,由自动别名机制创建不同的变量. 参数: initializer:初始化参数: name:可自定义的变量名称 举例: import tensorflow as tf v1=tf.Variable(tf.random_normal(shape=[2,3],mean=0,stddev=1),name='v1') v2=t…
函数形式: tf.placeholder(     dtype,     shape=None,     name=None ) 参数: dtype:数据类型.常用的是tf.float32,tf.float64等数值类型 shape:数据形状.默认是None,就是一维值,也可以是多维(比如[2,3], [None, 3]表示列是3,行不定) name:名称,可以理解为变量的名字(自变量) import tensorflow as tf import numpy as np input1 = tf…
placeholder函数相当于一个占位符,tf.placeholder(dtype, shape=None, name=None) dtype:数据类型.常用的是tf.float32,tf.float64等数值类型 shape:数据形状.默认是None,就是一维值,也可以多维,比如:[None,3],表示列是3,行不一定 name:名称. input1 = tf.placeholder(tf.float32) input2 = tf.placeholder(tf.float32) output…