主成分分析 PCA算法原理】的更多相关文章

对同一个体进行多项观察时,必定涉及多个随机变量X1,X2,…,Xp,它们都是的相关性, 一时难以综合.这时就需要借助主成分分析 (principal component analysis)来概括诸多信息的主要方面.我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质. 任何一个度量指标的好坏除了可靠.真实之外,还必须能充分反映个体间的变异.如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体.由这一点来看,一项指标在个体间的变异越大越…
一.PCA算法的原理 PCA(principle component analysis),即主成分分析法,是一个非监督的机器学习算法,是一种用于探索高维数据结构的技术,主要用于对数据的降维,通过降维可以发现更便于人理解的特征,加快对样本有价值信息的处理速度,此外还可以应用于可视化(降到二维)和去噪. PCA本质上是将方差最大的方向作为主要特征,并且在各个正交方向上将数据“离相关”,也就是让它们在不同正交方向上没有相关性.                                      …
PCA主成分分析法的数据主成分分析过程及python原理实现 1.对于主成分分析法,在求得第一主成分之后,如果需要求取下一个主成分,则需要将原来数据把第一主成分去掉以后再求取新的数据X’的第一主成分,即为原来数据X的第二主成分,循环往复即可. 2.利用PCA算法的原理进行数据的降维,其计算过程的数学原理如下所示,其降维的过程会丢失一定的信息,因此采用恢复过程恢复原来的高维数据后,它会恢复为原来数据在新的主成分上的映射点,而不再是原来的坐标点. (1)高维数据的降维(从n维降到k维数据) (2)从…
这篇文章很不错:https://blog.csdn.net/u013082989/article/details/53792010 为什么数据处理之前要进行归一化???(这个一直不明白) 这个也很不错:https://blog.csdn.net/u013082989/article/details/53792010#commentsedit 下面是复现一个例子: # -*- coding: utf-8 -*- #来源:https://blog.csdn.net/u013082989/articl…
一:引入问题 首先看一个表格,下表是某些学生的语文,数学,物理,化学成绩统计: 首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系,那么如何判断三个学生的优秀程度呢?首先我们一眼就能看出来,数学,物理,化学这三门课的成绩构成了这组数据的主成分(很显然,数学作为第一主成分,因为数据成绩拉的最开). 那么为什么我们能一眼看出来呢? 当然是我们的坐标轴选对了!! 下面,我们继续看一个表格,下标是一组学生的数学,物理,化学,语文,历史,英语成绩统计: 那么这个表我们能一眼看出来吗?…
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结. 1. PCA的思想 PCA顾名思义,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据.具体的,假如我们的数据集是n维的,共有m个数据$(x^{(1)},x^{(2)},...,x^{(m)})$.我们希望将这m个数据的维度从n维降到n'维…
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)--基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 多变量统计方法,通过析取主成分显出最大的个…
如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA.t-SNE的原理就说不过去了吧.跑通软件没什么了不起的,网上那么多教程,copy一下就会.关键是要懂其数学原理,理解算法的假设,适合解决什么样的问题.学习可以高效,但却没有捷径,你终将为自己的思维懒惰和行为懒惰买单. 2019年04月25日 不该先说covariacne matrix协方差矩阵的,此乃后话,先从直觉理解PCA.先看一个数据实例,明显的两个维度之间有一个相关性,大部分的方差可以被斜对角的维度解释,少数的noise则被虚线解…
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简化数据集的技术.主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征.常常应用在文本处理.人脸识别.图片识别.自然语言处理等领域.可以做在数据预处理阶段非常重要的一环,本文首先对基本概念进行介绍,然后给出PCA算法思想.流程.优缺点等等.最后通过一个综合案例去实现应用.(本文原…
主成分分析原理与实现   主成分分析是一种矩阵的压缩算法,在减少矩阵维数的同时尽可能的保留原矩阵的信息,简单来说就是将 \(n×m\)的矩阵转换成\(n×k\)的矩阵,仅保留矩阵中所存在的主要特性,从而可以大大节省空间和数据量.最近课上学到这个知识,感觉很有意思,就在网上找一些博客进行学习,发现网上关于这方面的介绍很多,但是感觉都不太全面,单靠某一个介绍还是无法理解,当然这可能也跟个人基础有关.所以我在这里根据自己的理解写一个总结性的帖子,与大家分享同时也方便自己复习.对于主成分分析,可以参照以…