Kafka+Storm+HDFS 整合示例】的更多相关文章

消息通过各种方式进入到Kafka消息中间件,比如可以通过使用Flume来收集日志数据,然后在Kafka中路由暂存,然后再由实时计算程序Storm做实时分析,最后将结果保存在HDFS中,这时我们就需要将在Storm的Spout中读取Kafka中的消息,然后交由具体的Spot组件去分析处理.下面开发一个简单WordCount示例程序,从Kafka读取订阅的消息行,通过空格拆分出单个单词,然后再做词频统计计算,最后将结果保存至HDFS. 1. kafka程序 package com.dxss.stor…
1 需求 kafka,storm,hdfs整合是流式数据常用的一套框架组合,现在 根据需求使用代码实现该需求 需求:应用所学技术实现,kafka接收随机句子,对接到storm中:使用storm集群统计句子中每个单词重复出现的次数(wordcount),将统计结果存入hdfs中. 1 pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apa…
在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了.实时应用场景可以使用Storm,它是一个实时处理系统,它为实时处理类应用提供了一个计算模型,可以很容易地进行编程处理.为了统一离线和实时计算,一般情况下,我们都希望将离线和实时计算的数据源的集合统一起来作为输入,然后将数据的流向分别经由实时系统和离线分析系统,分别进行分析处理,这时我们可以考虑将数据源(如使用Flume收集日志)直接连接…
转载自http://www.tuicool.com/articles/NzyqAn 在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了.实时应用场景可以使用Storm,它是一个实时处理系统,它为实时处理类应用提供了一个计算模型,可以很容易地进行编程处理.为了统一离线和实时计算,一般情况下,我们都希望将离线和实时计算的数据源的集合统一起来作为输入,然后将数据的流向分别经由实时系统和离线分析…
Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据. Hadoop一般用在离线的分析计算中,而storm区别于hadoop,用在实时的流式计算中,被广泛用来进行实时日志处理.实时统计.实时风控等场景,当然也可以用在对数据进行实时初步的加工,存储到分布式数据库中如HBase,便于后续的查询.面对的大批量的数据的实时计算,storm实现了一个可扩展的.低延迟.可靠性和容错的分布式计算平台.1.对象介绍tuple:表示流中一个基本的处理单元,可以包括多个fi…
转自:http://www.tuicool.com/articles/mMrQnu7 一 直以来都想接触Storm实时计算这块的东西,最近在群里看到上海一哥们罗宝写的Flume+Kafka+Storm的实时日志流系统的搭建文档,自己也 跟着整了一遍,之前罗宝的文章中有一些要注意点没提到的,以后一些写错的点,在这边我会做修正:内容应该说绝大部分引用罗宝的文章的,这里要谢谢罗宝兄 弟,还有写这篇文章@晨色星空J2EE也给了我很大帮助,这里也谢谢@晨色星空J2EE 之前在弄这个的时候,跟群里的一些人讨…
http://www.aboutyun.com/thread-6855-1-1.html 个人观点:大数据我们都知道hadoop,但并不都是hadoop.我们该如何构建大数据库项目.对于离线处理,hadoop还是比较适合的,但是对于实时性比较强的,数据量比较大的,我们可以采用Storm,那么Storm和什么技术搭配,才能够做一个适合自己的项目.下面给大家可以参考.可以带着下面问题来阅读本文章:1.一个好的项目架构应该具备什么特点?2.本项目架构是如何保证数据准确性的?3.什么是Kafka?4.f…
http://blog.csdn.net/weijonathan/article/details/18301321 一直以来都想接触Storm实时计算这块的东西,最近在群里看到上海一哥们罗宝写的Flume+Kafka+Storm的实时日志流系统的搭建文档,自己也跟着整了一遍,之前罗宝的文章中有一些要注意点没提到的,以后一些写错的点,在这边我会做修正:内容应该说绝大部分引用罗宝的文章的,这里要谢谢罗宝兄弟,还有写这篇文章@晨色星空J2EE也给了我很大帮助,这里也谢谢@晨色星空J2EE 之前在弄这个…
虽然比较久,但是这套架构已经很成熟了,记录一下 一般数据流向,从“数据采集--数据接入--流失计算--数据输出/存储”<ignore_js_op> 1).数据采集 负责从各节点上实时采集数据,选用cloudera的flume来实现 2).数据接入 由于采集数据的速度和数据处理的速度不一定同步,因此添加一个消息中间件来作为缓冲,选用apache的kafka 3).流式计算 对采集到的数据进行实时分析,选用apache的storm 4).数据输出 对分析后的结果持久化,暂定用mysql 另一方面是…
摘自:http://www.aboutyun.com/thread-6855-1-1.html…