ML(4): 决策树分类】的更多相关文章

决策树(Decision Tree)是用于分类和预测的主要技术,它着眼于从一组无规则的事例推理出决策树表示形式的分类规则,采用自顶向下的递归方式,在决策树的内部节点进行属性值的比较,并根据不同属性判断从该节点向下分支,在决策树的叶节点得到结论.因此,从根节点到叶节点就对应着一条合理规则,整棵树就对应着一组表达式规则.基于决策树算法的一个最大的优点是它在学习过程中不需要使用者了解很多背景知识,只要训练事例能够用属性即结论的方式表达出来,就能使用该算法进行学习.决策树算法在很多方面都有应用,如决策树…
sklearn CART决策树分类 决策树是一种常用的机器学习方法,可以用于分类和回归.同时,决策树的训练结果非常容易理解,而且对于数据预处理的要求也不是很高. 理论部分 比较经典的决策树是ID3.C4.5和CART,分别分析信息增益.增益率.基尼指数,总体思想是不断降低信息的不确定性,最后达到分类的目的. 这里介绍的CART(Classification And Regression Tree)决策树选用基尼指数(Gini Index)来依次选择划分属性 \[Gini(D)=\sum_{k=1…
决策树分类算法 1.概述 决策树(decision tree)——是一种被广泛使用的分类算法. 相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置 在实际应用中,对于探测式的知识发现,决策树更加适用. 2.算法思想 通俗来说,决策树分类的思想类似于找对象.现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了? 母亲:26. 女儿:长的帅不帅? 母亲:挺帅的. 女儿:收入高不? 母亲:不算很高,中等情况. 女儿:是公务员不? 母亲:是,在税务局上班呢…
http://blog.csdn.net/lsldd/article/details/41223147 从这一章开始进入正式的算法学习. 首先我们学习经典而有效的分类算法:决策树分类算法. 1.决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归.不过对于一些特殊的逻辑分类会有困难.典型的如异或(XOR)逻辑,决策树并不擅长解决此类问题. 决策树的构建不是唯一的,遗憾的是最优决策树的构建属于NP问题.因此如何构建一棵好的决策树是研究的重点. J. Ross Q…
发现帮助新手入门机器学习的一篇好文,首先感谢博主!:用Python开始机器学习(2:决策树分类算法) J. Ross Quinlan在1975提出将信息熵的概念引入决策树的构建,这就是鼎鼎大名的ID3算法.后续的C4.5, C5.0, CART等都是该方法的改进. 熵就是“无序,混乱”的程度.刚接触这个概念可能会有些迷惑.想快速了解如何用信息熵增益划分属性,可以参考这位兄弟的文章:http://blog.csdn.net/alvine008/article/details/37760639 数据…
python3 学习使用随机森林分类器 梯度提升决策树分类 的api,并将他们和单一决策树预测结果做出对比 附上我的git,欢迎大家来参考我其他分类器的代码: https://github.com/linyi0604/MachineLearning import pandas as pd from sklearn.cross_validation import train_test_split from sklearn.feature_extraction import DictVectoriz…
一.简介 决策树分类算法(decision tree)通过树状结构对具有某特征属性的样本进行分类.其典型算法包括ID3算法.C4.5算法.C5.0算法.CART算法等.每一个决策树包括根节点(root node),内部节点(internal node)以及叶子节点(leaf node). 根节点:表示第一个特征属性,只有出边没有入边,通常用矩形框表示. 内部节点:表示特征属性,有一条入边至少两条出边,通常用圆圈表示. 叶子节点:表示类别,只有一条入边没有出边,通常用三角表示. 决策树算法主要用于…
作为机器学习中可解释性非常好的一种算法,决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画成图形很像一棵树的枝干,故称决策树.在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系. 一.初识决策树 决策树是一种树形结构,一般的,一棵决策树包含一个根结点,若干个内部结点和若干个叶结点: 叶结点:树的一个方向的…
所用数据源,请参考本人博客http://www.cnblogs.com/wwxbi/p/6063613.html 1.导入包 import org.apache.spark.sql.SparkSession import org.apache.spark.sql.Dataset import org.apache.spark.sql.Row import org.apache.spark.sql.DataFrame import org.apache.spark.sql.Column impor…
Sklearn上关于决策树算法使用的介绍:http://scikit-learn.org/stable/modules/tree.html 1.关于决策树:决策树是一个非参数的监督式学习方法,主要用于分类和回归.算法的目标是通过推断数据特征,学习决策规则从而创建一个预测目标变量的模型.如下如所示,决策树通过一系列if-then-else 决策规则 近似估计一个正弦曲线. 决策树优势: 简单易懂,原理清晰,决策树可以实现可视化 数据准备简单.其他的方法需要实现数据归一化,创建虚拟变量,删除空白变量…