首先是读取数据集,并将csv中ExtractedBodyText为空的给去除掉 import pandas as pd import re import os dir_path=os.path.dirname(os.path.abspath(__file__)) data_path=dir_path+"/Database/HillaryEmails.csv" df=pd.read_csv(data_path) df=df[['Id','ExtractedBodyText']].drop…
1 问题描述 LDA由Blei, David M..Ng, Andrew Y..Jordan于2003年提出,是一种主题模型,它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一些文档抽取出它们的主题(分布)出来后,便可以根据主题(分布)进行主题聚类或文本分类.此外,一篇文档可以包含多个主题,文档中每一个词都由其中的一个主题生成. 人类是怎么生成文档的呢?LDA的这三位作者在原始论文中给了一个简单的例子.比如假设事先给定了这几个主题:Arts.Budgets.Childre…
“LDA(Latent Dirichlet Allocation)模型,模型主要解决文档处理领域的问题,比如文章主题分类.文章检测.相似度分析.文本分段和文档检索等问题.LDA主题模型是一个三层贝叶斯概率模型,包含词.主题.文档三层结构,文档到主题服从Dirichlet分布,主题到词服从多项式分布.它采用了词袋(Bag of Words)的方法,将每一篇文章视为一个词频向量,每一篇文档代表了一些主题所构成的概率分布,而每一个主题又代表了很多单词所构成的一个概率分布.利用LDA模型对用户参与的话题…