可以把数据结构保存进文件并直接读出, 不论读取或者是保存,我们都需要借助open()函数,并且是二进制方式(‘wb’,‘rb’) json模块可以把字典结构改写为string然后保存,并可以反向读取字典,但是即使是字典数据结构,两个包也是有差别的 json字典value不支持其他对象只支持python原有的结构,但是json由于是转换为string,所以保存的文件是可以使用文本查看器去读取的 pickle包则支持各种python的对象,但它写入的是二进制文件,并有自己独特的编码方式,所以是不可以…
『Re』知识工程作业_主体识别 一个比较完备的正则表达式介绍 几个基础函数 re.compile(pattern, flags=0) 将正则表达式模式编译成一个正则表达式对象,它可以用于匹配使用它的match ()和search ()等方法. 实际有两种使用方式: pattern.匹配方法(string) 或者 re.匹配方法(pattern,string) 使用或|来强化匹配规则: pattern_t = re.compile( '[0-9〇一二三四五六七八九]{4}年.{1,2}月.{1,3…
承前 接上节代码『TensotFlow』RNN中文文本_上, import numpy as np import tensorflow as tf from collections import Counter poetry_file = 'poetry.txt' poetrys = [] with open(poetry_file, 'r', encoding='utf-8') as f: for line in f: try: title, content = line.strip().sp…
中文文字预处理流程 文本处理 读取+去除特殊符号 按照字段长度排序 辅助数据结构生成 生成 {字符:出现次数} 字典 生成按出现次数排序好的字符list 生成 {字符:序号} 字典 生成序号list 文本预处理生成字典是需要去重的,一般的思路是使用set数据结构来达成,不过这里使用的是collection.Counter,可以去重还能计数 这里的文本以全唐诗为例,一般一行为1首,目的是去掉作者,生成为“[诗主体]”的格式作为RNN输入,为了保证等长,引入字符“_”在后续处理中为长度不够的诗句补齐…
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import torch.nn as nn import torch.nn.functional as F class LeNet(nn.Module): def __init__(self): super(LeNet,self).__init__() self.conv1 = nn.Conv2d(3, 6, 5)…
首更: 由于TensorFlow的奇怪形式,所以载入保存的是sess,把会话中当前激活的变量保存下来,所以必须保证(其他网络也要求这个)保存网络和载入网络的结构一致,且变量名称必须一致,这是caffe...好吧,caffe也没有这种python风格的设定... 废话少说,导入包: import numpy as np import tensorflow as tf 保存会话: W = tf.Variable([[1,2,3],[4,5,6]],dtype=tf.float32) b = tf.V…
RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础RNN网络回归问题 『TensotFlow』深层循环神经网络 『TensotFlow』LSTM古诗生成任务总结 对于torch中的RNN相关类,有原始和原始Cell之分,其中RNN和RNNCell层的区别在于前者一次能够处理整个序列,而后者一次只处理序列中一个时间点的数据,前者封装更完备更易于使用,后者更具灵…
多变量赋值 a = [1,2,(3,4)] b,c,d = a print(b,c,d) b,c,(d,e) = a print(b,c,d,e) 1 2 (3, 4) 1 2 3 4 a = "zxc" b,c,d = a print(b,c,d) z x c *:集成不定长元素 & 集合型实参展开为多个虚参 record = ('Dave', 'dave@example.com', '773-555-1212', '847-555-1212') name, email, *…
一.collections.defaultdict:多值映射字典 defaultdict省去了初始化容器的过程,会默认value对象为指定类型的容器 指定list时可以使用.append, from collections import defaultdict d = defaultdict(list) d['a'].append(1) d defaultdict(list, {'a': [1]}) 指定set时可以使用.add, d = defaultdict(set) d['a'].add(…
一.字典元素排序 dict.keys(),dict.values(),dict.items() 结合max.min.sorted.zip进行排序是个很好的办法,另外注意不使用zip时,字典的lambda操作方法: price = { 'a':1, 'b':2, 'c':3 } # 多个键的值相同时会采取元组比较的形式,实际应用时注意 min_p = min(zip(price.values(), price.keys())) max_p = max(zip(price.values(), pri…