题目大意: https://www.luogu.org/problemnew/show/P1020 Dliworth有两个互相对偶的定理:U的链划分使用的最少集合数,等于它的最大反链长度.(1)U的反链划分使用的最少集合数,等于它的最大链长度.(2) 更详细的讲解 #include <bits/stdc++.h> using namespace std; ]; ],dp2[]; ],f2[]; /// 将 对应长度的最后一位的下标 存入f1[] f2[]中 /* 即若 2 2 4 3 对应下标…
传送门:Problem 1020 https://www.cnblogs.com/violet-acmer/p/9852294.html 讲解此题前,先谈谈何为最长上升子序列,以及求法: 一.相关概念 1.串 & 子序列 一个串的子串是指该串的一个连续的局部. 如果不要求连续,则可称为它的子序列. 比如对串: "abcdefg" 而言,"ab","abd","bdef" 等都是它的子序列. 特别地,一个串本身,以及空串…
这两天被Dilworth.链和反链搞到头昏脑胀,终于有点眉目,现在来总结一下. Dilworth定理说的是:对于一个偏序集,其最少链划分数等于其最长反链的长度. Dilworth定理的对偶定理说的是:对于一个偏序集,其最少反链划分数等于其最长链的长度. Dilworth定理先不证,有空再不上来,其对偶定理证明如下: 设一个偏序集S的最少反链划分数是p,最长链长度是r. 1.先证p≥r.这是显然的,因为最长链长度是r,r个元素中的任意两个都可以比较,因此它们必定两两属于不同的反链,因此反链个数≥r…
题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹来袭.由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹. 输入导弹依次飞来的高度(雷达给出的高度数据是\le 50000≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统. 输入输出格式 输入格式: 11行,若干个整数(个…
https://www.luogu.org/problemnew/show/P1020 原题 接下来是dilworth定理 https://blog.csdn.net/u011676717/article/details/11842809 关键就是:  如果是求下降子序列的最小划分,相当于是求最小反链划分,等于最长不下降子序列的长度. ..求 下降子序列的最小划分  等于最长非下降子序列长度(确定 求非上升子序列的最小划分  等于最长非下降子序列长度还是等于最长上升子序列长度? ... cons…
首先上题目~ luogu P1020 导弹拦截 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹来袭.由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹. 输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统. 输入输出格式…
传送门 P1020导弹拦截 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹来袭.由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹. 输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统. 输入输出格式 输入格式: 一行,若…
P1020 导弹拦截 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹来袭.由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹. 输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统. 输入输出格式 输入格式: 一行,若干个正…
[题解]P1020 导弹拦截 从n^2到nlogn 第二问就是贪心,不多说 第一问: 简化题意:求最长不下降子序列 普通n^2: for (int i = 1; i <= n; i++) for (int j = 1; j < i; j++) if(a[j] >= a[i]) f[i] = max(f[i], f[j] + 1); cout << f[n]; 另一种n^2级,可能快一点点(还没交,不知对不对) f[0] = 1; for (int i = 1; i <=…
题目链接:https://www.luogu.com.cn/problem/P1020 题目大意: 给你一串数,求: 这串数的最长不上升子序列的长度: 最少划分成多少个子序列是的这些子序列都是不上升子序列. 第一个问题比较简单,就是用二分的方法 O(log n) 可以解决这个问题. 第二个问题,可以用 Dilworth定理 证明: 在一个序列中,最长不上升子序列的最少划分数就等于其最长上升子序列的长度 Dilworth定理参考自:https://www.cnblogs.com/ZDHYXZ/p/…