基于python的感知机】的更多相关文章

一. 1.感知机可以描述为一个线性方程,用python的伪代码可表示为: sum(weight_i * x_i) + bias -> activation #activation表示激活函数,x_i和weight_i是分别为与当前神经元连接的其它神经元的输入以及连接的权重.bias表示当前神经元的输出阀值(或称偏置).箭头(->)左边的数据,就是激活函数的输入 2.定义激活函数f: def func_activator(input_value): return 1.0 if input_val…
1. 感知机模型   感知机Perception是一个线性的分类器,其只适用于线性可分的数据.          f(x) = sign(w.x + b) 其试图在所有线性可分超平面构成的假设空间中找到一个能使训练集中的数据可分的超平面.因此,它找到的并不一定是最优的,即只是恰好拟合了训练数据的超平面. 2. 学习 感知机的学习策略为:最小化误分类点到超平面的距离. 3. 基于numpy的感知机实现 1 # coding: utf-8 2 import numpy as np 3 4 5 def…
决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(…
➠更多技术干货请戳:听云博客 时至今日,接触kubernetes也有一段时间了,而我们的大部分业务也已经稳定地运行在不同规模的kubernetes集群上,不得不说,无论是从应用部署.迭代,还是从资源调度管理等方面都有其难以言喻的优势,但是随着业务的不断增长,以及服务的多元化,容器的体量与管理的难度也随之增长. 浅述Kubernetes集群日常管理维护中的一些痛点: 1.较为庞大的集群规模及容器数量维护管理. 我们公司的业务场景属于典型的多业务线并行.同时为了便于分类管理,避免端口冲突和资源合理利…
关于本书的类型: 首先在我看来技术书分为两类,一类是“思想”,一类是“操作手册”. 对于思想类的书,一般作者有很多年经验积累,这类书需要细读与品位.高手读了会深有体会,豁然开朗.新手读了不止所云,甚至会说,都在扯犊子,看了半天也不知道如何下手. 对于操作手册的书,一般会提供大量的实例,告诉你详细的步骤.对于高手来说,这不就是翻译了一下官方文档嘛,好意思拿来骗钱.但对于新手来说,反而认为是好处,跟着上面的步骤操作就掌握了某种技术能力. 显然,本书属于后者,书中提供了大量代码实例,并没有太多思想层面…
受益于这个模块的帮助,在这里我推荐一手. https://pythonhosted.org/psutil/#processes psutil是一个基于python的跨平台系统信息监视模块.在python下,我们可以利用它来监视.检测和限制系统资源的使用.它提供了类似于一套控制台的指令功能,像是ps.netstat.ifconfig等等.当前这个模块支持的系统有windows/osx/linux/FreeBSD/Sun Solaris.32.64位均支持.python环境为2.6-3.5. 这里我…
Web登录测试是很常见的测试!手动测试大家再熟悉不过了,那如何进行自动化登录测试呢!本文作者就用python+selenium结合unittest单元测试框架来进行一次简单但比较完整的cnblog自动化登录测试,可提供点参考!下面就包括测试代码和每种测试情况的截图. 代码如下: ''' cnblog的登录测试,分下面几种情况: (1)用户名.密码正确 (2)用户名正确.密码不正确 (3)用户名正确.密码为空 (4)用户名错误.密码正确 (5)用户名为空.密码正确(还有用户名和密码均为空时与此情况…
搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台 By 子敬叔叔 最近在学习麦好的<机器学习实践指南案例应用解析第二版>,在安装学习环境的时候遇到一些问题,特此写个博客,希望可以帮助到有需要的人,同时也希望像我一样在摸索的人不要走太多的弯路,程序员应该多花时间在学习上,不应该把时间都浪费在折腾环境上面. 下载安装winpython 第一步,我们通过搜索引擎搜索到winPython,一般通过这个网站就可以下载,https://sourceforge.…
发展历程: <selenium_webdriver(python)第一版>   将本博客中的这个系列整理为pdf文档,免费. <selenium_webdriver(python)第二版>    加入的单元测试框架unittest,用其组织和运行测试用例, 5元. <selenium_webdriver(python)第三版>    整合和HTML测试报告的生成,初步形成测试架构的雏形, 8元. <selenium2 python 自动化测试实战>    …
从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Inceptionism.在这篇文章中,我们将讨论几个不同的深度学习框架,库以及工具. 深度学习是机器学习和人工智能的一种形式,利用堆积在彼此顶部的神经网络的多个隐藏层来尝试形成对数据更深层次的“理解”. 最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的…