机器学习(ML)十之CNN】的更多相关文章

引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自网上的免费课程和一些经典书籍,免费课程例如Standford Andrew Ng老师在Coursera的教程以及UFLDL Tutorial,经典书籍例如<统计学习方法>等,同时也参考了大量网上的相关资料(在后面列出).    前言 机器学习中的大部分问题都是优化问题,而绝大部分优化问题都可以使用梯度下降法处理,那么搞懂什么是梯度,…
CNN-二维卷积层 卷积神经网络(convolutional neural network)是含有卷积层(convolutional layer)的神经网络.卷积神经网络均使用最常见的二维卷积层.它有高和宽两个空间维度,常用来处理图像数据. 二维互相关运算 虽然卷积层得名于卷积(convolution)运算,但我们通常在卷积层中使用更加直观的互相关(cross-correlation)运算.在二维卷积层中,一个二维输入数组和一个二维核(kernel)数组通过互相关运算输出一个二维数组. 我们用一…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) Lecture 7: CNN 目录 一.CNN的引入 二.CNN的层次结构 三.CNN的小Demo加深对CNN的理解 四.CNN的特点 在学习本节课知识之前,先让我们来了解一下有关CNN的知识,让我们对CNN有一个大概的认知…
http://blog.csdn.net/l281865263/article/details/50278745 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.内容大多来自Standford公开课machine lear…
机器学习 CNCC - 2016 | 机器学习(原文链接) Machine Learning - ML,机器学习起源于人工智能,是AI的一个分支. 机器学习的理论基础:计算学习理论 - Computational Learning Theory 计算学习理论中最重要的理论模型:PAC(Probably Approximately Correct) - 概率近似正确模型(Valiant - 图灵奖,1984)   机器学习的形态:数据 + 算法 关于机器学习的未来 技术上:一定是能有效利用GPU等…
CNCC - 2016 | 机器学习(原文链接) Machine Learning - ML,机器学习起源于人工智能,是AI的一个分支. 机器学习的理论基础:计算学习理论 - Computational Learning Theory 计算学习理论中最重要的理论模型:PAC(Probably Approximately Correct) - 概率近似正确模型(Valiant - 图灵奖,1984)   机器学习的形态:数据 + 算法 未来 技术上:一定是能有效利用GPU等计算设备的方法(未必是深…
ML.NET 是面向.NET开发人员的开源和跨平台机器学习框架(Windows,Linux,macOS),通过使用ML.NET,.NET开发人员可以利用他们现有的工具和技能组,为情感分析,推荐,图像分类等常见场景创建自定义机器学习模型,将开发自定义AI并注入其应用程序之中,微软.NET团队在官方博客[https://devblogs.microsoft.com/dotnet/announcing-ml-net-1-0-rc-machine-learning-for-net/]发布了ML.NET…
1.为什么是ML策略 例如:识别cat分类器的识别率是90%,怎么进一步提高识别率呢? 想法: (1)收集更多数据 (2)收集更多的多样性训练样本 (3)使用梯度下降训练更长时间 (4)尝试Adam代替梯度下降 (5)尝试更大的网络 (6)尝试更小的网络 (7)尝试dropout (8)尝试L2正则化 (9)修改网络架构(激励函数,隐含层单元数目) 2.正交化 正交化(正交性)是一种系统设计属性,它可以确保修改算法的一个指令或者组成部分将不会对系统的其他组成部分产生或者传播副作用.使得核查算法变…
ML.NET 是面向.NET开发人员的开源和跨平台机器学习框架. ML.NET  还包括Model Builder  (一个简单的UI工具)和  CLI  ,使用自动机器学习(AutoML)构建自定义机器学习(ML)模型变得非常容易. .NET 开发人员使用  ML.NET,可以利用他们现有的工具和技能,为情感分析,价格预测,销售预测预测,图像分类等常见场景创建自定义机器学习模型,定制机器学习并注入其应用程序!微软在官方博客(https://devblogs.microsoft.com/dotn…
讲授Boosting算法的原理,AdaBoost算法的基本概念,训练算法,与随机森林的比较,训练误差分析,广义加法模型,指数损失函数,训练算法的推导,弱分类器的选择,样本权重削减,实际应用. AdaBoost算法它最典型的应用是视觉的目标检测,比如说人脸检测.行人检测.车辆检测等等.在深度学习流行之前,用这些简单的特征加上AdaBoost分类器来做目标检测,始终是我们工业界的一个主流的方案,在学术界里边它发的论文也是最多的. 大纲: 实验环节应用简介VJ框架简介分类器级联Haar特征训练算法的原…
讲授Boosting算法的原理,AdaBoost算法的基本概念,训练算法,与随机森林的比较,训练误差分析,广义加法模型,指数损失函数,训练算法的推导,弱分类器的选择,样本权重削减,实际应用 AdaBoost算法将用三节课来讲,ANN.SVM.AdaBoost这三种算法都是用三节课来讲,因为这三种算法都非常重要,都有一些成功的应用.AdaBoost和SVM一样整个理论的根基是非常完善的,而且他们都是从1995年左右开始出现,在出现的十几年里边他们都得到了成功的应用. 随即森林它是一种称为Baggi…
讲授线性分类器,分类间隔,线性可分的支持向量机原问题与对偶问题,线性不可分的支持向量机原问题与对偶问题,核映射与核函数,多分类问题,libsvm的使用,实际应用 大纲: 多分类问题libsvm简介实验环节实际应用SVM整体思路总结 多分类问题: SVM怎么解决多分类问题,整体上有两种思路,第一种思路是多个二分类器的组合来解决多分类问题,第二种思路是直接优化一个多类的损失函数,就是训练出的就只是一个模型可以解决多分类问题. 第一种思路有两种实现: ①1对剩余方案 假如有N个类,就训练n个分类器,每…
每次看到大数据人脸识别抓逃犯的新闻我都会感叹技术发展的太快了,国家治安水平也越来越好了…
模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基于tensorflow来介绍和演示 请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址 什么是tensorflow tensor意思是张量,flow是流. 张量原本是力学里的术语,表示弹性介质中各点应力状态.在数学中,张量表示的是一种广义的"数量",0阶张量…
人工智能 人工智能(Artificial Intelligence),英文缩写为AI.它是研究.开发用于模拟.延伸和扩展人的智能的理论.方法.技术及应用系统的一门新的技术科学. 人工智能是对人的意识.思维的信息过程的模拟.人工智能不是人的智能,但能像人那样思考.也可能超过人的智能. 人工智能的定义可以分为两部分,即“人工”和“智能”. 机器学习 1.    什么是机器学习 根据等人事件中判断人是否迟到了解什么是机器学习,具体参见地址:http://www.cnblogs.com/helloche…
 1.官网下载kaggle数据集Homesite Competition数据集,文件结构大致如下: 2.代码实战 #Parameter grid search with xgboost #feature engineering is not so useful and the LB is so overfitted/underfitted #so it is good to trust your CV #go xgboost, go mxnet, go DMLC! http://dmlc.ml…
一.LDA算法 基本思想:LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的.这点和PCA不同.PCA是不考虑样本类别输出的无监督降维技术. 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大. 浅显来讲,LDA方法的考虑是,对于一个多类别的分类问题,想要把它们映射到一个低维空间,如一维空间从而达到降维的目的,我们希望映射之后的数据间,两个类别之间“离得越远”,且类别内的数据点之间“离得越近”,这样…
使用ML.NET建立PCB加投率模型对单一蚀刻工序进行加投率预测, 此实例为最简单预测,要想实现全流程加投率预测挑战难度还是挺大的,可以查看另一种关于大数据在PCB行业应用---加投率计算基本原理:PCB 加投率计算实现基本原理--K最近邻算法(KNN)   一.PCB加投数据结构 建立数据结构,蚀刻工序影响报废的的关键参数,铜厚.线宽公差.最小线宽.最小线距(实际影响参数会更多) /// <summary> /// PCB加投模型样本数据结构(此为演示结构并非真实加投模型结构)--蚀刻工序…
讲授聚类算法的基本概念,算法的分类,层次聚类,K均值算法,EM算法,DBSCAN算法,OPTICS算法,mean shift算法,谱聚类算法,实际应用. 大纲: 聚类问题简介聚类算法的分类层次聚类算法的基本思想簇之间距离的定义k均值算法的基本思想k均值算法的流程k均值算法的实现细节问题实验EM算法简介Jensen不等式EM算法的原理推导收敛性证明 聚类算法是无监督学习的典型代表,前边讲过的数据降维算法是无监督学习的另外一种典型代表. 聚类问题简介: 聚类算法的概念第四讲机器学习的基本概念里边已经…
讲授集成学习的概念,Bootstrap抽样,Bagging算法,随机森林的原理,训练算法,包外误差,计算变量的重要性,实际应用 大纲: 集成学习简介 Boostrap抽样 Bagging算法 随机森林的基本原理 训练算法 包外误差 计算变量的重要性 实验环节 实际应用 随机森林是一种集成学习的算法,构建在bootstrap采样基础之上的,bagging算法基于boostrap采样,与之对应的是boosting算法.随机森林是多颗决策树的集成,由于采用了bootstrip采样,在训练时有一部分样本…
聚类算法 任务:将数据集中的样本划分成若干个通常不相交的子集,对特征空间的一种划分. 性能度量:类内相似度高,类间相似度低.两大类:1.有参考标签,外部指标:2.无参照,内部指标. 距离计算:非负性,同一性(与自身距离为0),对称性,直递性(三角不等式).包括欧式距离(二范数),曼哈顿距离(一范数)等等. 1.KNN k近邻(KNN)是一种基本分类与回归方法. 其思路如下:给一个训练数据集和一个新的实例,在训练数据集中找出与这个新实例最近的k  个训练实例,然后统计最近的k  个训练实例中所属类…
讲授线性分类器,分类间隔,线性可分的支持向量机原问题与对偶问题,线性不可分的支持向量机原问题与对偶问题,核映射与核函数,多分类问题,libsvm的使用,实际应用 大纲: 支持向量机简介线性分类器分类间隔线性可分问题线性可分的对偶问题线性不可分问题线性不可分的对偶问题核映射与核函数 支持向量机简介: SVM是所有机器学习算法里边,对数学要求比较高的一种算法,主要难在拉格朗日对偶和KKT条件. 由Vapnik等人1995年提出,在出现后的20多年里它是最有影响力的机器学习算法之一,直到2012年它才…
http://sofasofa.io/forum_main_post.php?postid=1001084 http://sofasofa.io/forum_main_post.php?postid=1000546 http://sofasofa.io/forum_main_post.php?postid=1001156 http://sofasofa.io/forum_main_post.php?postid=1001119…
1.Apriori算法 Apriori算法是常用的用于挖掘出数据关联规则的算法,它用来找出数据值中频繁出现的数据集合,找出这些集合的模式有助于我们做一些决策. Apriori算法采用了迭代的方法,先搜索出候选1项集及对应的支持度,剪枝去掉低于支持度的1项集,得到频繁1项集.然后对剩下的频繁1项集进行连接,得到候选的频繁2项集,筛选去掉低于支持度的候选频繁2项集,得到真正的频繁二项集,以此类推,迭代下去,直到无法找到频繁k+1项集为止,对应的频繁k项集的集合即为算法的输出结果. 可见这个算法还是很…
参考文献:https://www.jianshu.com/p/5314834f9f8e # -*- coding: utf-8 -*- """ Created on Mon Jun 11 10:52:14 2018 @author: Administrator """ import numpy as np import matplotlib.pyplot as plt from sklearn import datasets iris = dat…
前面我们介绍了基于卷积神经网络的图像风格迁移,利用一张content image 和 style image,可以让最终的图像既保留content image的基本结构,又能显示一定的style image的风格,今天我们介绍另外一篇类似的文章: Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis,这篇文章与之前的 Image Style Transfer Using Convo…
降维(Dimensionality Reduction) 降维的目的:1 数据压缩 这个是二维降一维 三维降二维就是落在一个平面上. 2 数据可视化 降维的算法只负责减少维数,新产生的特征的意义就必须由我们自 己去发现了. 主成分分析(PCA)是最常见的降维算法. 在 PCA 中,我们要做的是找到一个方向向量(Vector direction),当我们把所有的数据 都投射到该向量上时,我们希望投射平均均方误差能尽可能地小. 主成分分析与线性回归是两种不同的算法.主成分分析最小化的是投射误差(Pr…
之前讲过SVM,是通过最大化间隔导出的一套方法,现在从另外一个角度来定义SVM,来介绍整个线性SVM的家族. 大纲: 线性支持向量机简介L2正则化L1-loss SVC原问题L2正则化L2-loss SVC原问题L2正则化SVC对偶问题L1正则化L2-loss SVC原问题多类线性支持向量机实验环节libsvm和liblinear的比较实际应用 线性支持向量机简介: 不带核函数的预测函数是sgn(wTx+b)的形式,w是所有支持向量的组合,展开之后是sgn(Σ1~l aiyixiTxi+b)的形…
讲授线性分类器,分类间隔,线性可分的支持向量机原问题与对偶问题,线性不可分的支持向量机原问题与对偶问题,核映射与核函数,多分类问题,libsvm的使用,实际应用 大纲: SVM求解面临的问题 SMO算法简介 子问题的求解 子问题是凸优化的证明 收敛性保证 优化变量的选择 完整的算法 SVM求解面临的问题: SVM的对偶问题是求解一个二次函数的极值问题(二次规划问题): 前边一项是二次型,带有不等式约束和等式约束,C是惩罚因子. 写成矩阵形式: 二次规划问题可以用梯度下降法.牛顿法.坐标下降法等等…
讲授LDA基本思想,寻找最佳投影矩阵,PCA与LDA的比较,LDA的实际应用 前边讲的数据降维算法PCA.流行学习都是无监督学习,计算过程中没有利用样本的标签值.对于分类问题,我们要达到的目标是提取或计算出来的特征对不同的类有很好的区分度,由于没有用样本的标签值,会导致一个问题,不同的两类样本,如A和B类投影之后交杂在一起无法区分开来,所以这种投影结果对于分类是不利的.线性判别分析LDA是以分类为目的的降维投影技术,把向量X变换为Y,Y的维数更低 ,Y要对分类比较有利能把不同的类有效的区分开来.…