题意翻译 给定一长度为n的数列,请在不改变原数列顺序的前提下,从中随机的取出一定数量的整数,并使这些整数构成单调上升序列. 输出这类单调上升序列的最大长度. 数据范围:1<=n<=1000001<=n<=1000001<=n<=100000 和On^2算法不同,dp数组存储的不再是子序列长度了,而是一个最小的递增子序列.用len这个变量存储最小子序列的长度(或者说末尾位置),当a[i]>dp[len]时直接把a[i]添加到子序列的末尾,当a[i]<=dp…
这个博客说的已经很好了.http://blog.csdn.net/shuangde800/article/details/7474903 简单记录一下自己学的: 问题就是求一个数列最长上升子序列的长度. 如果子序列长度相同,那么末尾小的子序列更有可能成为最长的子序列.所以就用一个l数组存当子序列长度为len时最小的末尾元素.如果序列下一个值比l[len]大,说明上升子序列长度增加,那么l[len++]=a[i];如果是小,就想办法把它插入到了l数组中.... HDU 1950 说白了就是求lis…
The All-purpose Zero Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 947    Accepted Submission(s): 453 Problem Description ?? gets an sequence S with n intergers(0 < n <= 100000,0<= S[i] &l…
//Accepted 3540 KB 62 ms //dp 最长上升子序列 #include <cstdio> #include <cstring> #include <iostream> using namespace std; ; int dp[imax_n]; int d[imax_n]; int a[imax_n]; int n; int len; int max(int a,int b) { return a>b?a:b; } int binary_se…
给出一个 1 ∼ n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的n个整数组成的序列. Output 最长上升子序列的长度   题解   这里给出两种方法,先说经典版本的,设dp[i]表示以以 a[i]为结尾的LST的长度,n方的暴力很好想,显然我们在i之间找到一个最大的LST,且要保证a[j]<a[i],那么显然dp[i]=max(dp[i],dp[j]+1),那么这个dp显然就是在i之前找到一个以小于a[i…
原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素.注意d中元素是单调递增的,下面要用到这个性质.首先len = 1,d[1] = a[1],然后对a[i]:若a[i]>d[len],那么len++,d[len] = a[i];否则,我们要从d[1]到d[len-1]中找到一个j,满足d[j-1]<a[i]<d[j],…
转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5. 下面一步一步试着找出它. 我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列. 此外,我们用一个变量Len来记录现在最长算到多少了 首先,把d[1]有序地放到B里,令B[1] = 2,就是说当…
最长上升子序列 时间限制: 10 Sec   内存限制:128 MB 题目描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.我们想知道此时最长上升子序列长度是多少? 输入 第一行一个整数N,表示我们要将1到N插入序列中,接下是N个数字,第k个数字Xk,表示我们将k插入到位置Xk(0<=Xk<=k-1,1<=k<=N) 输出 1行,表示最长上升子序列的长度是多少. 样例输入 3 0 0 2 样例输出 2 提示 100%的数据 n&l…
最近在做单调队列,发现了最长上升子序列O(nlogn)的求法也有利用单调队列的思想. 最长递增子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增子序列. 设dp[i]表示以i为结尾的最长递增子序列的长度,则状态转移方程为: dp[i] = max{dp[j]+1}, 1<=j<i,a[j]<a[i]. 这样简单的复杂度为O(n^2),其实还有更好的方法. 考虑两个数a[x]和a[y],x&…
引出: 问题描述:给出一个序列a1,a2,a3,a4,a5,a6,a7….an,求它的一个子序列(设为s1,s2,…sn),使得这个子序列满足这样的性质,s1<s2<s3<…<sn并且这个子序列的长度最长.输出这个最长的长度.(为了简化该类问题,我们将诸如最长下降子序列及最长不上升子序列等问题都看成同一个问题,其实仔细思考就会发现,这其实只是<符号定义上的问题,并不影响问题的实质)例如有一个序列:1  7  3  5  9  4  8,它的最长上升子序列就是 1 3 4 8…