数据预处理以及探索性分析(EDA)】的更多相关文章

1.根据某个列进行groupby,判断是否存在重复列. # Count the unique variables (if we got different weight values, # for example, then we should get more than one unique value in this groupby) all_cols_unique_players = df.groupby('playerShort').agg({col:'nunique' for col…
首先依托于一个场景来进行可视化分析 直接选了天池大数据竞赛的新人赛的一个活跃题目 用的方式也是最常用的数据预处理方式 [新人赛]快来一起挖掘幸福感!https://tianchi.aliyun.com/competition/entrance/231702/introduction 既然是data cleaning的总结 就稍微写详细点 (其实感觉在写废话 我一共就想总结一下matplotlib的pyplot和seaborn的画图) 用pandas读进来之后是dataframe格式的,所以可以用…
二代测序原理: 1.DNA待测文库构建. 超声波把DNA打断成小片段,一般200--500bp,两端加上不同的接头2.Flowcell.一个flowcell,8个channel,很多接头3.桥式PCR扩增.每个DNA片段将在各自位置集中成束,每一束含有单个DNA模板的很多拷贝,目的:将碱基的信号强度放大,达到测序所需的信号要求.4.测序.边合成边测序.反应所需材料,dNTP的3’端特殊处理,不能继续反应,因此每次只能添加一个碱基,另外每个碱基有一种颜色.dNTP添加到链上后,所有未使用游离dNT…
前言 这部分也许是数据预处理最为关键的一个阶段. 如何对数据降维是一个很有挑战,很有深度的话题,很多理论书本均有详细深入的讲解分析. 本文仅介绍主成分分析法(PCA)和探索性因子分析法(EFA),并给出具体的实现步骤. 主成分分析法 - PCA 主成分分析(principal components analysis, PCA)是一种分析.简化数据集的技术. 它把原始数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次…
在拿到一份数据准备做挖掘建模之前,首先需要进行初步的数据探索性分析(你愿意花十分钟系统了解数据分析方法吗?),对数据探索性分析之后要先进行一系列的数据预处理步骤.因为拿到的原始数据存在不完整.不一致.有异常的数据,而这些“错误”数据会严重影响到数据挖掘建模的执行效率甚至导致挖掘结果出现偏差,因此首先要数据清洗.数据清洗完成之后接着进行或者同时进行数据集成.转换.归一化等一系列处理,该过程就是数据预处理.一方面是提高数据的质量,另一方面可以让数据更好的适应特定的挖掘模型,在实际工作中该部分的内容可…
原文链接 简介 为发挥 SIMD1 的最大作用,除了对其进行矢量化处理2外,我们还需作出其他努力.可以尝试为循环添加 #pragma omp simd3,查看编译器是否成功进行矢量化,如果性能有所提升,则达到满意状态. 然而,可能性能根本不会提升,甚至还会降低. 无论处于何种情况,为了最大限度发挥 SIMD 执行的优势并实现性能提升,通常需要重新设计算法和数据布局,以便生成的 SIMD 代码尽可能高效. 另外还可收到额外的效果,即标量(非矢量化)版代码会表现得更好. 本文将通过一个 3D 动画算…
数据预处理没有统一的标准,只能说是根据不同类型的分析数据和业务需求,在对数据特性做了充分的理解之后,再选择相关的数据预处理技术,一般会用到多种预处理技术,而且对每种处理之后的效果做些分析对比,这里面经验的成分比较大,即使是声称数据挖掘专家的人可能在某一个方面研究得很深入,但面对新的应用情况和数据,一开始他也不可能很有把握地说能挖掘出有价值的东西,数据挖掘这个术语原来也叫数据采矿,就好比采矿,需要耐心,需要经验,学要总结.其本身是一个综合学科:人工智能,机器学习,数据库,统计学等学科的大综合.个人…
上篇文章讲了卷积神经网络的基本知识,本来这篇文章准备继续深入讲CNN的相关知识和手写CNN,但是有很多同学跟我发邮件或私信问我关于PaddlePaddle如何读取数据.做数据预处理相关的内容.网上看的很多教程都是几个常见的例子,数据集不需要自己准备,所以不需要关心,但是实际做项目的时候做数据预处理感觉一头雾水,所以我就写一篇文章汇总一下,讲讲如何用PaddlePaddle做数据预处理. PaddlePaddle的基本数据格式 根据官网的资料,总结出PaddlePaddle支持多种不同的数据格式,…
据预处理是总称,涵盖了数据分析师使用它将数据转处理成想要的数据的一系列操作.例如,对某个网站进行分析的时候,可能会去掉 html 标签,空格,缩进以及提取相关关键字.分析空间数据的时候,一般会把带单位(米.千米)的数据转换为“单元性数据”,这样,在算法的时候,就不需要考虑具体的单位.数据预处理不是凭空想象出来的.换句话说,预处理是达到某种目的的手段,并且没有硬性规则,一般会跟根据个人经验会形成一套预处理的模型,预处理一般是整个结果流程中的一个环节,并且预处理的结果好坏需要放到到整个流程中再进行评…
数据预处理是指因为算法或者分析需要,对经过数据质量检查后的数据进行转换.衍生.规约等操作的过程.整个数据预处理工作主要包括五个方面内容:简单函数变换.标准化.衍生虚拟变量.离散化.降维.本文将作展开介绍,并提供基于Python的代码实现. 1. 简单函数变换 简单函数变换是指对原始数据直接使用某些数学函数进行转换,主要用于将不具有正态分布的数据变换成具有正态分布,同时也可以用于对数据进行压缩,比如\(10^8和10^9\)更关注的是相对差距而不是绝对差距,可以通过取对数变换实现. 常用的函数包括…