2.2 logistic回归损失函数(非常重要,深入理解) 上一节当中,为了能够训练logistic回归模型的参数w和b,需要定义一个成本函数 使用logistic回归训练的成本函数 为了让模型通过学习来调整参数,要给出一个含有m和训练样本的训练集 很自然的,希望通过训练集找到参数w和b,来得到自己得输出 对训练集当中的值进行预测,将他写成y^(I)我们希望他会接近于训练集当中的y^(i)的数值 现在来看一下损失函数或者叫做误差函数 他们可以用来衡量算法的运行情况 可以定义损失函数为y^和y的差…
感知机.logistic回归 损失函数对比探讨 感知机 假如数据集是线性可分的,感知机学习的目标是求得一个能够将正负样本完全分开的分隔超平面 \(wx+b=0\) .其学习策略为,定义(经验)损失函数并将损失函数最小化.通常,定义损失函数的策略是:==误分类点到分隔超平面的总距离==.[李航,2.2节] 如果没有误分点,则损失函数值是0. 感知机学习算法若采用不用的初始值或选取不同的误分类点,得到的分隔超平面可不同. logistic回归(对数几率回归): 逻辑回归和感知机一样,定义一个决策面(…
上一节当中,为了能够训练logistic回归模型的参数w和b,需要定义一个成本函数 使用logistic回归训练的成本函数 为了让模型通过学习来调整参数,要给出一个含有m和训练样本的训练集 很自然的,希望通过训练集找到参数w和b,来得到自己得输出 对训练集当中的值进行预测,将他写成y^(I)我们希望他会接近于训练集当中的y^(i)的数值 现在来看一下损失函数或者叫做误差函数 他们可以用来衡量算法的运行情况 可以定义损失函数为y^和y的差,或者他们差的平方的一半,结果表明你可能这样做,但是实际当中…
怎么样计算偏导数来实现logistic回归的梯度下降法 它的核心关键点是其中的几个重要公式用来实现logistic回归的梯度下降法 接下来开始学习logistic回归的梯度下降法 logistic回归的公式 现在只考虑单个样本的情况,关于该样本的损失函数定义如上面第三个公式,其中a是logistic回归的输出,y是样本的基本真值标签值, 下面写出该样本的偏导数流程图 假设样本只有两个特征x1和x2 为了计算Z,我们需要输入参数w1和w2和b 因此在logistic回归中,我们要做的就是变换参数w…
有监督学习 机器学习分为有监督学习,无监督学习,半监督学习.强化学习.对于逻辑回归来说,就是一种典型的有监督学习. 既然是有监督学习,训练集自然能够用例如以下方式表述: {(x1,y1),(x2,y2),⋯,(xm,ym)} 对于这m个训练样本,每一个样本本身有n维特征. 再加上一个偏置项x0, 则每一个样本包括n+1维特征: x=[x0,x1,x2,⋯,xn]T 当中 x∈Rn+1, x0=1, y∈{0,1} 李航博士在统计学习方法一书中给分类问题做了例如以下定义: 分类是监督学习的一个核心…
sklearn线性回归模型 import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model def get_data(): #506行,14列,最后一列为label,前面13列为参数 data_original = np.loadtxt('housing.data') scale_data = scale_n(data_original) np.random.shuffle(scale_dat…
原文:http://blog.csdn.net/dongtingzhizi/article/details/15962797  Logistic回归总结 作者:洞庭之子 微博:洞庭之子-Bing (2013年11月) PDF下载地址:http://download.csdn.net/detail/lewsn2008/6547463 1.引言 看了Stanford的Andrew Ng老师的机器学习公开课中关于Logistic Regression的讲解,然后又看了<机器学习实战>中的Logist…
原文地址:https://www.cnblogs.com/zichun-zeng/p/3824745.html 1. logistic回归与一般线性回归模型的区别: (1)     线性回归的结果变量 与因变量或者反应变量与自变量之间的关系假设是线性的,而logistic回归中 两者之间的关系是非线性的: (2)     前提假设不同,在线性回归中,通常假设,对于自变量x的某个值,因变量Y的观测值服从正态分布,但在logistic回归中,因变量Y 服从二项分布或者多项分布: (3)     lo…
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概…
原文:http://www.cnblogs.com/jerrylead/archive/2011/03/05/1971867.html#3281650 对线性回归,logistic回归和一般回归的认识 [转载时请注明来源]:http://www.cnblogs.com/jerrylead JerryLead 2011年2月27日 作为一个机器学习初学者,认识有限,表述也多有错误,望大家多多批评指正. 1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述…