ggplot2学习总结】的更多相关文章

1. 目前有四种主题 theme_gray(), theme_bw() , theme_minimal(),theme_classic() 2. X轴设置刻度 scale_x_continuous(limits=c(1950,2000),breaks=seq(1950,2000,5)) 3. Bar & Line ggplot2()+geom_bar(aes(y=x,fill=factor(Group.2)),stat="identity",position='dodge')+…
R语言里面一个比较重要的绘图包——ggplot2,是由Hadley Wickham于2005年创建,于2012年四月进行了重大更新,作者目前的工作是重写代码,简化语法,方便用户开发和使用.ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离,是按图层作图,有利于结构化思维,同时它保有命令式作图的调整函数,使其更具灵活性,绘制出来的图形美观,同时避免繁琐细节.ggplot2可以通过底层组件构造前所未有的图形,你所受到的限制只是你的想象力. 它大概可以分为三个部分: (1)…
转载:https://www.jianshu.com/p/d46cf6934a2f R语言基本绘图函数中可以利用par()以及layout()来进行图形排列,但是这两个函数对于ggplot图则不太适用,本文主要讲解如何对多ggplot图形多页面进行排列.主要讲解如何利用包gridExtra.cowplot以及ggpubr中的函数进行图形排列. 绘制图形 #load packages library(gridExtra) library(cowplot) library(ggpubr) #data…
简介 ggplot2包是基于Wilkinson在<Grammar of Graphics>一书中所提出的图形语法的具体实现, 这套图形语法把绘图过程归纳为data, transformation, scale, coordinates, elements, guides, display等一系列独立的步骤, 通过将这些步骤搭配组合, 来实现个性化的统计绘图.于是, 得益于该图形语法, Hadley Wickham所开发的ggplot2是如此人性化, 不同于R基础绘图和先前的lattice那样参…
出处:http://www.cellyse.com/how_to_use_gggplot2_part1/ ggplot2包是基于Wilkinson在<Grammar of Graphics>一书中所提出的图形语法的具体实现, 这套图形语法把绘图过程归纳为data, transformation, scale, coordinates, elements, guides, display等一系列独立的步骤, 通过将这些步骤搭配组合, 来实现个性化的统计绘图.于是, 得益于该图形语法, Hadle…
一.简介 R中的ggplot2是一个非常强大灵活的数据可视化包,熟悉其绘图规则后便可以自由地生成各种可视化图像,但其默认的色彩和样式在很多时候难免有些过于朴素,本文将要介绍的ggthemr包专门针对原生ggplot2图像进行美化,掌握它之后你就可以创作出更具特色和美感的数据可视化作品. 二.基础内容 2.1 安装 不同于常规的R包,ggthemr并没有在CRAN上发布,因此我们需要使用devtools中的install_github()直接从github上安装它,参照github上ggthemr…
一.简介 ggplot2是R语言中四大著名绘图框架之一,且因为其极高的参数设置自由度和图像的美学感,即使其绘图速度不是很快,但丝毫不影响其成为R中最受欢迎的绘图框架:ggplot2的作者是现任Rstudio首席科学家的Hadley Wickham,ggplot2基于Leland Wilkinson在Grammar of Graphics(图形的语法)中提出的理论,取首字母缩写再加上plot,于是得名ggplot,末尾的2是因为Hadley写包的一个习惯——对先前的版本不满意便写一个新版本的名称不…
一.简介 经常利用Python进行数据可视化的朋友一定用过或听说过plotly这样的神器,我在(数据科学学习手札43)Plotly基础内容介绍中也曾做过非常详细的介绍,其渲染出的图像以浏览器为载体,非常精美,且绘制图像的自由程度堪比ggplot2,其为R也提供了接口,在plotly包中,但对于已经习惯用ggplot2进行可视化的朋友而言,自然是不太乐意转向plotly的学习,有趣的是plotly的R包中有着函数ggplotly(),可以将ggplot2生成的图像转换为交互式的plotly图像,且…
前言 ggplot2是R语言最流行的第三方扩展包,是RStudio首席科学家Hadley Wickham读博期间的作品,是R相比其他语言一个独领风骚的特点.包名中“gg”是grammar of graphics的简称,是一套优雅的绘图语法.Wickham Hadley将这套语法诠释如下: 一张统计图形就是从数据到几何对象(geometric object,缩写geom)的图形属性(aesthetic attribute,缩写aes)的一个映射.此外,图形中还可能包含数据的统计变换(statist…
一.简介 上一篇中我们介绍了ggplot2的基本语法规则,为了生成各种复杂的叠加图层,需要了解ggplot2中一些基本的几何图形的构造规则,本文便就常见的基础几何图形进行说明: 二.各基础图形 2.1 abline().hline()与vline() 在R的基础绘图系统中我们可以在已绘制的图床上通过abline来添加线条,在ggplot2中当然也有类似的方法: geom_abline(): 我们主要使用两个参数控制线条的位置,slope控制斜率,intercept控制截距,下面是一个简单的例子,…
R语言里面一个比较重要的绘图包——ggplot2,是由Hadley Wickham于2005年创建,于2012年四月进行了重大更新,作者目前的工作是重写代码,简化语法,方便用户开发和使用.ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离,是按图层作图,有利于结构化思维,同时它保有命令式作图的调整函数,使其更具灵活性,绘制出来的图形美观,同时避免繁琐细节.ggplot2可以通过底层组件构造前所未有的图形,你所受到的限制只是你的想象力. 它大概可以分为三个部分: (1)…
#----------------------------------------------------------# # R in Action (2nd ed): Chapter 19 # # Advanced graphics with ggplot2 # # requires packages ggplot2, RColorBrewer, gridExtra, # # and car (for datasets) # # install.packages(c("ggplot2"…
本文版权归http://www.cnblogs.com/weibaar 本文旨在介绍R语言中ggplot2包的一些精细化操作,主要适用于对R画图有一定了解,需要更精细化作图的人,尤其是那些刚从excel转ggplot2的各位,有比较频繁的作图需求的人.不讨论那些样式非常酷炫的图表,以实用的商业化图表为主.包括以下结构: 1.画图前的准备:自定义ggplot2格式刷 2.画图前的准备:数据塑形利器dplyr / tidyr介绍 3.常用的商业用图: 1)简单柱形图+文本(单一变量) 2)分面柱形图…
现在对R感兴趣的人越来越多,很多人都想快速的掌握R语言,然而,由于目前大部分高校都没有开设R语言课程,这就导致很多人不知道如何着手学习R语言. 对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来.当然,这不是最好的学习方式,最好的方式是——看书.目前,市面上介绍R语言的书籍很多,中文英文都有.那么,众多书籍中,一个生手应该从哪一本着手呢?入门之后如何才能把自己练就成某个方面的高手呢?相信这是很多人心中的疑问.有这种疑问的人…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来.当然,这不是最好的学习方式,最好的方式是——看书.目前,市面上介绍R语言的书籍很多,中文英文都有.那么,众多书籍中,一个生手应该从哪一本着手呢?入门之后如何才能把自己练就成某个方面的高手呢?相信这是很多人心中的疑问.有这种疑问的人有福了,因为笔者将根据自己的经历总结一下R语言书籍的学习路线图以使Ruser少走些弯路. 本文分为6个部分,分别介绍初级入门,高级入门,绘图与可…
R语言  ggplot2包的学习   分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplot2图形之基本语法: ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离ggplot2是按图层作图ggplot2保有命令式作图的调整函数,使其更具灵活性ggplot2将常见的统计变换融入到了绘图中.ggplot的绘图有以下几个特点:第一,有明确的起始(以ggplot函数开始)与终止(一句语句一幅图):其二,图层之间的叠加…
本文为带大家了解R语言以及分段式的步骤教程! 人们学习R语言时普遍存在缺乏系统学习方法的问题.学习者不知道从哪开始,如何进行,选择什么学习资源.虽然网络上有许多不错的免费学习资源,然而它们多过了头,反而会让人挑花了眼. 为了构建R语言学习方法,我们在Vidhya和DataCamp中选一组综合资源,帮您从头学习R语言.这套学习方法对于数据科学或R语言的初学者会很有用;如果读者是R语言的老用户,则会由本文了解这门语言的部分最新成果. R语言学习方法会帮助您快速.高效学习R语言. 前言 在开始学习之前…
本文分为6个部分,分别介绍初级入门,高级入门,绘图与可视化,计量经济学,时间序列分析,金融等. 1.初级入门 <An Introduction to R>,这是官方的入门小册子.其有中文版,由丁国徽翻译,译名为<R导论>.<R4Beginners>,这本小册子有中文版应该叫<R入门>.除此之外,还可以去读刘思喆的<153分钟学会R>. 这本书收集了R初学者提问频率最高的153个问题.为什么叫153分钟呢?因为最初作者写了153个问题,阅读一个问题…
<学习R> 基本信息 原书名:Learning R 原出版社: O'Reilly Media 作者: (美)Richard Cotton 译者: 刘军 丛书名: 图灵程序设计丛书 出版社:人民邮电出版社 ISBN:9787115351708 上架时间:2014-4-28 出版日期:2014 年6月 开本:16开 页码:341 版次:1-1 所属分类:计算机 > 软件与程序设计 > 综合 > 高级程序语言设计 更多关于>>> <学习R>   编辑推…
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/kMD8d5R/article/details/82111558 作者:徐瑞龙,量化分析师,R语言中文社区专栏作者 博客专栏: https://www.cnblogs.com/xuruilong100 本文翻译自<Time Series Deep Learning: Forecasting Sunspots With Keras Stateful Lstm In R> 由于数据科学机器学习和深度学…
目录 时间序列深度学习:seq2seq 模型预测太阳黑子 学习路线 商业中的时间序列深度学习 商业中应用时间序列深度学习 深度学习时间序列预测:使用 keras 预测太阳黑子 递归神经网络 设置.预处理与探索 所用的包 数据 探索性数据分析 回测:时间序列交叉验证 LSTM 模型 数据准备 用 recipe 做数据预处理 调整数据形状 构建 LSTM 模型 在所有分割上回测模型 时间序列深度学习:seq2seq 模型预测太阳黑子 本文翻译自<Time Series Deep Learning,…
目录 时间序列深度学习:状态 LSTM 模型预测太阳黑子 教程概览 商业应用 长短期记忆(LSTM)模型 太阳黑子数据集 构建 LSTM 模型预测太阳黑子 1 若干相关包 2 数据 3 探索性数据分析 4 回测:时间序列交叉验证 5 用 Keras 构建状态 LSTM 模型 结论 时间序列深度学习:状态 LSTM 模型预测太阳黑子 本文翻译自<Time Series Deep Learning: Forecasting Sunspots With Keras Stateful Lstm In R…
目录 基于 Keras 用深度学习预测时间序列 问题描述 多层感知机回归 多层感知机回归结合"窗口法" 改进方向 扩展阅读 本文主要参考了 Jason Brownlee 的博文 Time Series Prediction With Deep Learning in Keras 原文使用 python 实现模型,这里是用 R 基于 Keras 用深度学习预测时间序列 时间序列预测一直以来是机器学习中的一个难题. 在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建神经网络…
ggplot2已经成为了R语言中数据可视化的同义词, 这是一个强大的工具, 可以帮助我们制作优良的图表, 创造出令人吃惊的图片, 下面我们一起学习(本博文参考了知乎问题如何使用 ggplot2中黄宝臣的回答(), 并在此基础上补充了一些细节和自己的理解). ggplot2函数里面为属性赋值的时候需要使用的参数名: 图形属性(aes): 表示几何对象的属性: 横坐标, 点的大小, 颜色, 填充色等; 比如一个点的属性有它的横纵坐标, 它的大小, 颜色等等. 不同的几何对象(geom_,  geom…
ggplot2作图详解:入门函数qplot   ggplot2的功能不用我们做广告,因为它的作者Hadley Wickham就说ggplot2是一个强大的作图工具,它可以让你不受现有图形类型的限制,创造出任何有助于解决你所遇到问题的图形.一点也不谦虚. H.W.还说了另外一句话,“学习ggplot2你得忘记一些东西”,所以也有人说ggplot2是作图软件中的太极功.有点高深. 那好吧,我就怀着无比崇敬的心情来学一学这太极图法.先安装软件包: install.packages("ggplot2&q…
1 机器学习和计算机视觉 Crab:灵活.快速的推荐引擎 gensim:人性化的话题建模库 hebel:GPU 加速的深度学习库 NuPIC:智能计算 Numenta 平台 pattern:Python 网络挖掘模块 PyBrain:另一个 Python 机器学习库 Pylearn2:一个基于 Theano 的机器学习库 python-recsys:一个用来实现推荐系统的 Python 库 scikit-learn:基于 SciPy 构建的机器学习 Python 模块 pydeep:Python…
凡是和数据无关的图形设置内容理论上都可以归为主题类,但考虑到一些内容(如坐标轴)的特殊性,可以允许例外的情况.主题的设置相当繁琐,很容易就占用了 大量的作图时间,应尽量把这些东西简化,把注意力主要放在数据分析上.基于这种考虑,ggplot2主题设置的内容虽然相当多,本文仅在总体上作一简单介 绍. 1 theme函数及其参数 让使用者在数据分析阶段能专注于数据而不是图形细节,这是数据可视化分析工具是否合格的标准之一.某些作图软件(或自以为有作图能力的软件)给出的初始图 形简直惨不忍睹,不花时间修改…
R语言可视化学习笔记之添加p-value和显著性标记 http://www.jianshu.com/p/b7274afff14f?from=timeline   上篇文章中提了一下如何通过ggpubr包为ggplot图添加p-value以及显著性标记,本文将详细介绍.利用数据集ToothGrowth进行演示 #先加载包 library(ggpubr) #加载数据集ToothGrowth data("ToothGrowth") head(ToothGrowth) ## len supp…