scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk…
一.TFRecord文件书写效率对比(单线程和多线程对比) 1.准备工作 # Author : Hellcat # Time : 18-1-15 ''' import os os.environ["CUDA_VISIBLE_DEVICES"]="-1" ''' import os import glob import numpy as np import tensorflow as tf import matplotlib.pyplot as plt np.set_…
内置数据类型 数据名称 例子 数字: Bool,Complex,Float,Integer True/False; z=a+bj; 1.23; 123 字符串: String '123456' 元组: Tuple (123456) 集合: Set 字典: Dict {1:'123456'} 文件:File 数组:Array 字节数组:Bytearray graph TD; 存储方式划分-->可变对象; 存储方式划分-->不可变对象; 可变对象-->字典; 可变对象-->列表; 可变…
目录 语句,表达式 赋值语句 打印语句 分支语句 循环语句 函数 函数的作用 函数的三要素 函数定义 DEF语句 RETURN语句 函数调用 作用域 闭包 递归函数 匿名函数 迭代 语句,表达式 赋值语句 变量名首次使用时会被创建 变量名使用前必须复制 隐晦的赋值操作 模块导入 函数定义 类定义 赋值语句大于序列赋值 打印语句 print() 分支语句 if语句中的判断为真值判断 真值测试可以是逻辑表达式,算数运算式,in,not in等 真值判定 任何非零数字和非空对象为True 数字零,空对…
TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训练方法教程 一.API介绍 基础操作列表 『TensorFlow』0.x_&_1.x版本框架改动汇总 『TensorFlow』函数查询列表_数值计算 『TensorFlow』函数查询列表_张量属性调整 『TensorFlow』简单的数学计算 『TensorFlow』变量初始化 常用基础操作 『Ten…
Fork版本项目地址:SSD 一.TFR数据读取 创建slim.dataset.Dataset对象 在train_ssd_network.py获取数据操作如下,首先需要slim.dataset.Dataset对象 # Select the dataset. # 'imagenet', 'train', tfr文件存储位置 # TFR文件命名格式:'voc_2012_%s_*.tfrecord',%s使用train或者test dataset = dataset_factory.get_datas…
一.相关知识 官网介绍 matplotlib API 相关博客 matplotlib绘图基础 漂亮插图demo 使用seaborn绘制漂亮的热度图 fig, ax = plt.subplots(2,2),其中参数分别代表子图的行数和列数,一共有 2x2 个图像.函数返回一个figure图像和一个子图ax的array列表. 补充:gridspec命令可以对子图区域划分提供更灵活的配置. 中文显示方框问题 这是由于matplotlib文件夹内没有中文字体包导致的,实际上函数包本身是支持中文的,常见解…
在计算机中,没有任何数据类型是固定的,完全取决于如何看待这片数据的内存区域. 在numpy.ndarray.view中,提供对内存区域不同的切割方式,来完成数据类型的转换,而无须要对数据进行额外的copy,可以节约内存空间,我们可以将view看做对内存的展示方式. 如: import numpy as np x = np.arange(10, dtype=np.int) print('An integer array:', x) print ('An float array:', x.view(…
线性分类器损失函数明细: 『cs231n』线性分类器损失函数 最优化Optimiz部分代码: 1.随机搜索 bestloss = float('inf') # 无穷大 for num in range(1000): W = np.random.randn(10, 3073) * 0.0001 loss = L(X_train, Y_train, W) if loss < bestloss: bestloss = loss bestW = W scores = bsetW.dot(Xte_cols…
下图Github地址:Mask_RCNN       Mask_RCNN_KeyPoints『计算机视觉』Mask-RCNN_论文学习『计算机视觉』Mask-RCNN_项目文档翻译『计算机视觉』Mask-RCNN_推断网络其一:总览『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合『计算机视觉』Mask…