blender-十大基本操作】的更多相关文章

[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经典数据挖掘算法]系列的收尾篇,是因为本人是Google脑残粉.因了PageRank而Google得以成立,因了Google而这个世界变得好了那么一点点. 1. 引言 PageRank是Sergey Brin与Larry Page于1998年在WWW7会议上提出来的,用来解决链接分析中网页排名的问题.…
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 极大似然 极大似然(Maximum Likelihood)估计为用于已知模型的参数估计的统计学方法.比如,我们想了解抛硬币是正面(head)的概率分布\(\theta\):那么可以通过最大似然估计方法求得.假如我们抛硬币\(10\)次,其中\(8\)次正面.\(2\)次反面:极大似然估计参数\(\theta\)值: \[ \ha…
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensemble learning)通过组合多个基分类器(base classifier)来完成学习任务,颇有点"三个臭皮匠顶个诸葛亮"的意味.基分类器一般采用的是弱可学习(weakly learnable)分类器,通过集成学习,组合成一个强可学习(strongly learnable)分类器.所谓…
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector Machines)是分类算法中应用广泛.效果不错的一类.<统计学习方法>对SVM的数学原理做了详细推导与论述,本文仅做整理.由简至繁SVM可分类为三类:线性可分(linear SVM in linearly separable case)的线性SVM.线性不可分的线性SVM.非线性(nonlin…
随着微信公众平台的开放,微信端小程序涌现市场,带来很很多便利和简单的原生操作,询:微信端小程序是否会替代传统的APP应用?两者的优劣如何?我们一起来看看传统APP与微信端小程序十大优劣对比       微信正让60%的APP变得没有存在价值,这个观点是从价值层面来谈的,以我们和传统企业合作实践的经验来看,从功能层面来看,未来,80%的传统APP将会被微信端小程序所代替.         APP作为用户接入移动互联网世界的桥梁和入口,研究APP,对于传统商家实现移动营销具有重要的价值.下面,从开发…
这篇文章是以前看到的,觉得写得非常好,转载在自己BLOG作为记录.原文:http://www.pmtoo.com/news/2015/0108/7260.html. 当企业发展到一定时期时,会不可避免地沾染上“大公司病”.电信制造领域巨头华为也不例外,这是华为一位底层员工在10年所写的华为的十大内耗.在过去的四年里,创始人任正非提出华为狼性文化的背后,还要有勇于追赶的乌龟精神和管理组织上的眼镜蛇特质,以此激活华为人的斗志,规避“大公司病”. 四年过去了,华为今日的成绩证明了任正非的努力是多么富有…
PHP是使用最广泛的脚本编程语言之一.市场份额颇能说明其主导地位.PHP 7已推出,这个事实让这种编程语言对当前的开发人员来说更具吸引力.尽管出现了一些变化,但是许多开发人员对PHP的未来持怀疑态度.一个原因是PHP的安全. Linux管理员不可不知十大PHP安全要点 PHP是使用最广泛的脚本编程语言之一.市场份额颇能说明其主导地位.PHP 7已推出,这个事实让这种编程语言对当前的开发人员来说更具吸引力.尽管出现了一些变化,但是许多开发人员对PHP的未来持怀疑态度.一个原因是PHP的安全. PH…
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes)属于无监督学习的一种,实现简单,没有迭代,学习效率高,在大样本量下会有较好的表现.但因为假设太强--假设特征条件独立,在输入向量的特征条件有关联的场景下并不适用. 1. 朴素贝叶斯算法 朴素贝叶斯分类器的主要思路:通过联合概率\(P(x,y) = P(x|y) P(y)\)建模,运用贝叶斯定理求解后…
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(decision tree)算法基于特征属性进行分类,其主要的优点:模型具有可读性,计算量小,分类速度快.决策树算法包括了由Quinlan提出的ID3与C4.5,Breiman等提出的CART.其中,C4.5是基于ID3的,对分裂属性的目标函数做出了改进. 决策树模型 决策树是一种通过对特征属性的分类对…
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽然都是以k打头,但却是两类算法--kNN为监督学习中的分类算法,而k-means则是非监督学习中的聚类算法:二者相同之处:均利用近邻信息来标注类别. 聚类是数据挖掘中一种非常重要的学习流派,指将未标注的样本数据中相似的分为同一类,正所谓"物以类聚,人以群分"嘛.k-means是聚类算法中最…