PCA主成分分析的理解】的更多相关文章

用PCA(主成分分析法)进行信号滤波 此文章从我之前的C博客上导入,代码什么的可以参考matlab官方帮助文档 现在网上大多是通过PCA对数据进行降维,其实PCA还有一个用处就是可以进行信号滤波.网上对此的介绍比较少,正好最近研究了一下,所以把自己的理解记录下来. 对于PCA原理的介绍网上已经有很多帖子,我比较喜欢的是这个:PCA的数学原理.文章把PCA降维定性和数学理解分析得生动且透彻,这里不再重复. 直接上干货吧,简单一个例子: 给定信号: 其中有用信号为三个频率不同且幅值相位不相同的余弦函…
前言            以下内容是个人学习之后的感悟,转载请注明出处~ 简介 在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性.人们自然希望变量个数较少而得到的 信息较多.在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反 映此课题的信息有一定的重叠.主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立 尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有…
PCA主成分分析 PCA目的 最大可分性(最大投影方差) 投影 优化目标 关键点 推导 为什么要找最大特征值对应的特征向量呢? 之前看3DMM的论文的看到其用了PCA的方法,一开始以为自己对于PCA已经有了一定的理解,但是当看到式子的时候发现自己好像对于原理却又不甚明了,所以又回顾了以下PCA的原理,在此写一个总结. PCA目的 主成分分析(principal component analysis, PCA) 是常用的一种降维方法,其目的是为了让数据合理的降维,在降低维度的同时尽量保证数据的原始…
转载于http://blog.csdn.net/guyuealian/article/details/68487833 网上关于PCA(主成分分析)原理和分析的博客很多,本博客并不打算长篇大论推论PCA理论,而是用最精简的语言说明鄙人对PCA的理解,并在最后给出用Matlab计算PCA过程的三种方法,方便大家对PCA的理解.     源代码和附件下载地址: http://download.csdn.net/detail/guyuealian/9799160       关于PCA原理的文章,可参…
作者:拾毅者 出处:http://blog.csdn.net/Dream_angel_Z/article/details/50760130 Github源代码:https://github.com/csuldw/MachineLearning/tree/master/PCA PCA(principle component analysis) .主成分分析,主要是用来减少数据集的维度,然后挑选出基本的特征.原理简单,实现也简单.关于原理公式的推导,本文不会涉及,你能够參考以下的參考文献,也能够去W…
PCA 主成分分析 原理概述 用途 - 降维中最常用的手段 目标 - 提取最有价值的信息( 基于方差 ) 问题 - 降维后的数据的意义 ? 所需数学基础概念 向量的表示 基变换 协方差矩阵 协方差 优化目标 降维实例 代码实现 """ 这里假设原始数据集为矩阵 dataMat,其中每一行代表一个样本,每一列代表同一个特征(与上面的介绍稍有不同,上 面是每一列代表一个样本,每一行代表同一个特征). """ import numpy as np ##…
PCA(主成分分析)方法浅析 降维.数据压缩 找到数据中最重要的方向:方差最大的方向,也就是样本间差距最显著的方向 在与第一个正交的超平面上找最合适的第二个方向 PCA算法流程 上图第一步描述不正确,应该是去中心化,而不是中心化 具体来说,投影这一环节就是:将与特征值对应的k个特征向量分别作为行向量组成特征向量矩阵P 直接乘以特征变量就好.原来是二维数据,降维之后只有一维. 我们想保留几个维度的特征,就留下几个特征值和对应的特征向量.…
一.理论概述 1)问题引出 先看如下几张图: 从上述图中可以看出,如果将3个图的数据点投影到x1轴上,图1的数据离散度最高,图3其次,图2最小.数据离散性越大,代表数据在所投影的维度上具有越高的区分度,这个区分度就是信息量.如果我们用方差来形容数据的离散性的话,就是数据方差越大,表示数据的区分度越高,也就是蕴含的信息量是越大的. 基于这个知识,如果对数据进行降维的话,图1投影到x1轴上面,数据的离散度最大:图2投影到x2轴上离散度最大,图3呢?图3需要找到一个新的坐标轴,使其投影到上面的数据方差…
PCA 即主成分分析技术,旨在利用降维的思想,把多指标转化为少数几个综合指标. 假设目前我们的数据特征为3,即数据维度为三,现在我们想将数据降维为二维,一维: 我们之前的数据其实就是三维空间中的一个个点,这些点漫布在空间中,如下图所示 将这些数据去掉一个维度,也就是说将这些数据映射到某一个平面上,可以是xy平面,可以是xz平面,也可以是yz平面. 条件是映射后的数据的方差要保持最大,保留最大的数据波动性,也就是保留最多的原始的数据量. 在此基础上如果还要继续进行PCA,也就是将二维空间中的点映射…
PCA(Principal Components Analysis),它是一种“投影(projection)技巧”,就是把高维空间上的数据映射到低维空间.比如三维空间的一个球,往坐标轴方向投影,变成了一个圆.球是3维的,圆是2维的.在球变成圆的这个投影过程中,丢失了原来物体(球)的一部分“性质”---圆不是球了,只有面积没有体积了:也保留了原来物体的一部分性质---圆 和 球 还是很像的…… 而对于一个训练样本y而言,假设它有M个特征(M维),y={y1, y2,...yM},通过PCA,进行投…