https://blog.csdn.net/cai13160674275/article/details/72991049?locationNum=7&fps=1 四种简单的图像显著性区域特征提取方法-----> AC/HC/LC/FT. 上文讲了几种简单的方法,显著性检测就是把一幅图像中最吸引人注意的部分提取出来. 我用opencv重写了LC,AC,FT三种算法,代码和效果如下:   利用频谱来做的显著性提取的方式   1.,后面的方法其实大概都是基于这个实现的,代码样子差不多 LC思路就…
laviewpbt  2014.8.4 编辑 Email:laviewpbt@sina.com   QQ:33184777 最近闲来蛋痛,看了一些显著性检测的文章,只是简单的看看,并没有深入的研究,以下将研究的一些收获和经验共享. 先从最简单的最容易实现的算法说起吧: 1. LC算法 参考论文:Visual Attention Detection in Video Sequences Using Spatiotemporal Cues. Yun Zhai and Mubarak Shah.  P…
四种简单的图像显著性区域特征提取方法-----> AC/HC/LC/FT. 分类: 图像处理 2014-08-03 12:40 4088人阅读 评论(4) 收藏 举报 salient region detec显著性检测 laviewpbt  2014.8.3 编辑 Email:laviewpbt@sina.com   QQ:33184777 最近闲来蛋痛,看了一些显著性检测的文章,只是简单的看看,并没有深入的研究,以下将研究的一些收获和经验共享. 先从最简单的最容易实现的算法说起吧: 1. LC…
1999年的SIFT(ICCV 1999,并改进发表于IJCV 2004,本文描述):参考描述:图像特征点描述. 参考原文:SURF特征提取分析 本文有大量删除,如有疑义,请参考原文. SURF对SIFT的改进: 引用Wiki百科中对SURF描述为:"SURF (Speeded Up Robust Features) is a robust local feature detector, first presented by Herbert Bay et al. in 2006, that ca…
<基于qml创建最简单的图像处理程序>系列课程及配套代码基于qml创建最简单的图像处理程序(1)-基于qml创建界面http://www.cnblogs.com/jsxyhelu/p/8343310.html课程1附件https://files.cnblogs.com/files/jsxyhelu/%E9%98%B6%E6%AE%B5%E4%BB%A3%E7%A0%811.zip基于qml创建最简单的图像处理程序(2)-使用c++&qml进行图像处理http://www.cnblogs…
简单几何图像一般包含点.直线.矩阵.圆.椭圆.多边形等等.首先认识一下opencv对像素点的定义. 图像的一个像素点有1或者3个值.对灰度图像有一个灰度值,对彩色图像有3个值组成一个像素值.他们表现出不同的颜色. 那么有了点才干组成各种多边形. (一)首先绘制直线 函数为:cv2.line(img,Point pt1,Point pt2,color,thickness=1,line_type=8 shift=0) 有值的代表有默认值.不用给也行.能够看到这个函数主要接受參数为两个点的坐标,线的颜…
基于古老的Marr视觉理论,视觉识别和场景重建的基础即第一阶段为局部显著性探测.探测到的主要特征为直觉上可刺激底层视觉的局部显著性--特征点.特征线.特征块. 相关介绍:局部特征显著性-点特征(SIFT为例) 五.GLOH特征(梯度位置方向直方图)        2005年MIko等人提出的SIFT的变子,改进为关键点周围的区间划分,由田字格划分修改为 八象限圆格划分,如下图:       在很大的一个训练集上训练得到PCA模型,再将272维直方图映射到一个128维的描述子.在整体的测试中,比S…
这篇文章是图像显著性领域最具代表性的文章,是在1998年Itti等人提出来的,到目前为止引用的次数超过了5000,是多么可怕的数字,在它的基础上发展起来的有关图像显著性论文更是数不胜数,论文的提出主要是受到灵长类动物早期视觉系统的神经结构和行为所启发而产生了视觉注意系统.灵长类动物具有很强的实时处理复杂场景的能力,视觉信息进行深入的处理之前,对所收集到的感觉信息进行选择,这些选择可能减少场景理解的复杂性,这个选择过程在一个空间有限的视野区域即所谓的注意焦点(focus of attention,…
Python用Pillow(PIL)进行简单的图像操作 颜色与RGBA值 计算机通常将图像表示为RGB值,或者再加上alpha值(通透度,透明度),称为RGBA值.在Pillow中,RGBA的值表示为由4个整数组成的元组,分别是R.G.B.A.整数的范围0~255.RGB全0就可以表示黑色,全255代表黑色.可以猜测(255, 0, 0, 255)代表红色,因为R分量最大,G.B分量为0,所以呈现出来是红色.但是当alpha值为0时,无论是什么颜色,该颜色都不可见,可以理解为透明. from P…
HOG特征:方向梯度直方图(Histogram of Oriented Gradient,)特征是一种全局图像特征描述子. 它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. 参考原文:目标检测之特征提取之-HOG特征  如有疑义…