归一化(softmax)、信息熵、交叉熵】的更多相关文章

Softmax是用于分类过程,用来实现多分类的 它把一些输出的神经元映射到(0-1)之间的实数,并且归一化保证和为1,从而使得多分类的概率之和也刚好为1. Softmax可以分为soft和max,max也就是最大值,假设有两个变量a,b.如果a>b,则max为a,反之为b.那么在分类问题里面,如果只有max, 输出的分类结果只有a或者b,是个非黑即白的结果.但是在现实情况下,我们希望输出的是取到某个分类的概率,或者说, 我们希望分值大的那一项被经常取到,而分值较小的那一项也有一定的概率偶尔被取到…
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(BlogID=106) 环境说明 Windows 10 VSCode Python 3.8.10 Pytorch 1.8.1 Cuda 10.2 前言   在<DL基础补全计划(一)---线性回归及示例(Pytorch,平方损失)>(https://blog.csdn.net/u011728480/a…
机器学习中经常遇到这几个概念,用大白话解释一下: 一.归一化 把几个数量级不同的数据,放在一起比较(或者画在一个数轴上),比如:一条河的长度几千甚至上万km,与一个人的高度1.7m,放在一起,人的高度几乎可以被忽略,所以为了方便比较,缩小他们的差距,但又能看出二者的大小关系,可以找一个方法进行转换. 另外,在多分类预测时,比如:一张图,要预测它是猫,或是狗,或是人,或是其它什么,每个分类都有一个预测的概率,比如是猫的概率是0.7,狗的概率是0.1,人的概率是0.2... , 概率通常是0到1之间…
神经网络由各个部分组成 1.得分函数:在进行输出时,对于每一个类别都会输入一个得分值,使用这些得分值可以用来构造出每一个类别的概率值,也可以使用softmax构造类别的概率值,从而构造出loss值, 得分函数表示最后一层的输出结果,得分函数的维度对应着样本的个数和标签的类别数 得分结果的实例说明:一个输入样本的特征值Xi 1*4, w表示权重参数3*4,这里使用的是全连接y = w * x.T,输出结果为3*1, 这3个结果分别表示3种标签的得分值 代码说明: out = np.dot(x_ro…
1 softmax函数 softmax函数的定义为 $$softmax(x)=\frac{e^{x_i}}{\sum_j e^{x_j}} \tag{1}$$ softmax函数的特点有 函数值在[0-1]的范围之内 所有$softmax(x_i)$相加的总和为1 面对一个分类问题,能将输出的$y_i$转换成[0-1]的概率,选择最大概率的$y_i$作为分类结果[1]. 这里需要提及一个有些类似的sigmoid函数,其定义为 $$sigmoid(x)=\frac{1}{1+e^{-x_i}} \…
1. softmax回归是分类问题 回归(Regression)是用于预测某个值为"多少"的问题,如房屋的价格.患者住院的天数等. 分类(Classification)不是问"多少",而是问"哪一个",用于预测某个事物属于哪个类别,如该电子邮件是否是垃圾邮件.该图像是猫还是狗.该用户接下来最有可能看哪部电影等. 分类问题也有些许差别:(1)我们只对样本的硬性类别感兴趣,即属于哪个类别:(2)我们希望得到软性类别,即每个类别的概率是多少.这两者的界…
神经网络如何利用反向传播算法进行参数更新,加入交叉熵和softmax又会如何变化? 其中的数学原理分析:请点击这里.…
目录 sigmod交叉熵 Softmax转换 Softmax交叉熵 参考资料 sigmod交叉熵 Sigmod交叉熵实际就是我们所说的对数损失,它是针对二分类任务的损失函数,在神经网络中,一般输出层只有一个结点. 假设y为样本标签,_y为全连接网络的输出层的值,那么,这个对数损失定义为 PS:这个是可以用极大似然估计推导出来的 举例: y=0,_y=0.8,那此时的sigmod交叉熵为1.171 import numpy as np def sigmod(x): return 1/(1+np.e…
深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/lilong117194/article/details/81542667 1. softmax层的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层…
深度学习分类问题结尾就是softmax,损失函数是交叉熵,本质就是极大似然...…