首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
ML.NET教程之情感分析(二元分类问题)
】的更多相关文章
ML.NET教程之情感分析(二元分类问题)
机器学习的工作流程分为以下几个步骤: 理解问题 准备数据 加载数据 提取特征 构建与训练 训练模型 评估模型 运行 使用模型 理解问题 本教程需要解决的问题是根据网站内评论的意见采取合适的行动. 可用的训练数据集中,网站评论可能是有毒(toxic)(1)或者无毒(not toxic)(0)两种类型.这种场景下,机器学习中的分类任务最为适合. 分类任务用于区分数据内的类别(category),类型(type)或种类(class).常见的例子有: 识别情感是正面或是负面 将邮件按照是否为垃圾邮件归类…
LSTM 文本情感分析/序列分类 Keras
LSTM 文本情感分析/序列分类 Keras 请参考 http://spaces.ac.cn/archives/3414/ neg.xls是这样的 pos.xls是这样的neg=pd.read_excel(‘neg.xls’,header=None,index=None) pos=pd.read_excel(‘pos.xls’,header=None,index=None) #读取训练语料完毕 pos[‘mark’]=1 neg[‘mark’]=0 #给训练语料贴上标签 pn=pd.conc…
ML.NET 示例:二元分类之用户评论的情绪分析
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 用户评论的情绪分析 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态API README.md 已更新 控制台应用程序 .tsv 文件 情绪分析 二元分类 线性分类 在…
Python爬虫和情感分析简介
摘要 这篇短文的目的是分享我这几天里从头开始学习Python爬虫技术的经验,并展示对爬取的文本进行情感分析(文本分类)的一些挖掘结果. 不同于其他专注爬虫技术的介绍,这里首先阐述爬取网络数据动机,接着以豆瓣影评为例介绍文本数据的爬取,最后使用文本分类的技术以一种机器学习的方式进行情感分析.由于内容覆盖面巨大,无法详细道尽,这篇文章旨在给那些对相关领域只有少量或者没有接触的人一个认知的窗口,希望激发读者自行探索的兴趣. 以下的样本代码用Pyhton写成,主要使用了scrapy, sklearn两个…
Python爬取《你好李焕英》豆瓣短评并基于SnowNLP做情感分析
爬取过程在这里: Python爬取你好李焕英豆瓣短评并利用stylecloud制作更酷炫的词云图 本文基于前文爬取生成的douban.txt,基于SnowNLP做情感分析. 依赖库: 豆瓣镜像比较快: pip install snownlp -i http://pypi.douban.com/simple/ --trusted-host=pypi.douban.com/simple 初识SnowNLP: SnowNLP是一个常用的Python文本分析库,是受到TextBlob启发而发明的.由于当…
使用ML.NET实现情感分析[新手篇]
在发出<.NET Core玩转机器学习>和<使用ML.NET预测纽约出租车费>两文后,相信读者朋友们即使在不明就里的情况下,也能按照内容顺利跑完代码运行出结果,对使用.NET Core和ML.NET,以及机器学习的效果有了初步感知.得到这些体验后,那么就需要回头小结一下了,本文仍然基于一个情感分析的案例,以刚接触机器学习的.NET开发者的视角,侧重展开一下起手ML.NET的基本理解和步骤. 当我们意识到某个现实问题超出了传统的模式匹配能力范围,需要借助模拟的方式先尽可能还原已经产生…
ML.NET 示例:二元分类之信用卡欺诈检测
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 基于二元分类和PCA的信用卡欺诈检测 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态API 更新至0.7 两个控制台应用程序 .csv 文件 欺诈检测 二元分类 Fa…
使用ML.NET实现情感分析[新手篇]后补
在<使用ML.NET实现情感分析[新手篇]>完成后,有热心的朋友建议说,为何例子不用中文的呢,其实大家是需要知道怎么预处理中文的数据集的.想想确实有道理,于是略微调整一些代码,权作示范. 首先,我们需要一个好用的分词库,所以使用NuGet添加对JiebaNet.Analyser包的引用,这是一个支持.NET Core的版本. 然后,训练和验证用的数据集找一些使用中文的内容,并且确认有正确的标注,当然是要越多越好.内容类似如下: 最差的是三文鱼生鱼片. 0 我在这里吃了一顿非常可口的早餐. 1…
ML.NET 示例:二元分类之垃圾短信检测
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 垃圾短信检测 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态API 可能需要更新项目结构以匹配模板 控制台应用程序 .tsv 文件 垃圾信息检测 二元分类 SDCA(…
pyhanlp文本分类与情感分析
语料库 本文语料库特指文本分类语料库,对应IDataSet接口.而文本分类语料库包含两个概念:文档和类目.一个文档只属于一个类目,一个类目可能含有多个文档.比如搜狗文本分类语料库迷你版.zip,下载前请先阅读搜狗实验室数据使用许可协议. 用Map描述 这种关系可以用Java的Map<String, String[]>来描述,其key代表类目,value代表该类目下的所有文档.用户可以利用自己的文本读取模块构造一个Map<String, String[]>形式的中间语料库,然后利用I…