####欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 介绍 GRU(Gated Recurrent Unit) 是由 Cho, et al. (2014) 提出,是LSTM的一种变体.GRU的结构与LSTM很相似,LSTM有三个门,而GRU只有两个门且没有细胞状态,简化了LSTM的结构.而且在许多情况下,GRU与LSTM有同样出色的结果.GRU有更少的参数,因此相对容易训练且过拟合问题要轻一点. 目录 GRU…
转自知乎上看到的一篇很棒的文章:用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路.做法和部分实践的经验. 业务问题描述: 淘宝商品的一个典型的例子见下图,图中商品的标题是“夏装雪纺条纹短袖t恤女春半袖衣服夏天中长款大码胖mm显瘦上衣夏”.淘宝网后台是通过树形的多层的类目体系管理商品的,覆盖…
1. 理解深度学习与CNN: 台湾李宏毅教授的入门视频<一天搞懂深度学习>:https://www.bilibili.com/video/av16543434/ 其中对CNN算法的矩阵卷积运算:矩阵1与矩阵2相同位置上的元素进行相乘,再将所有乘积求和,得到卷积矩阵的对应元素值. https://blog.csdn.net/deepdsp/article/details/6922612 https://blog.csdn.net/gavin__zhou/article/details/72723…
深度学习之 cnn 进行 CIFAR10 分类 import torchvision as tv import torchvision.transforms as transforms from torchvision.transforms import ToPILImage show = ToPILImage() import torch as t import torch.nn as nn import torch.nn.functional as F transform = transfo…
目录 基于 Keras 用深度学习预测时间序列 问题描述 多层感知机回归 多层感知机回归结合"窗口法" 改进方向 扩展阅读 本文主要参考了 Jason Brownlee 的博文 Time Series Prediction With Deep Learning in Keras 原文使用 python 实现模型,这里是用 R 基于 Keras 用深度学习预测时间序列 时间序列预测一直以来是机器学习中的一个难题. 在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建神经网络…
[深度学习]CNN 中 1x1 卷积核的作用 最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前接触过的教材的例子中最小的卷积核是 3x3 ,那么,1x1 的卷积核有什么意义呢? 最初应用 1x1 卷积核的神经网络是 Network In Network,然后 GoogLeNet 和 VGG 也不约而同的更正了. 他们在论文中解释,大概有下面 2 个意义. 1.增加网络的深度 这个就比较好理解…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言H2o包的几个应用案例 笔者寄语:受启发想了解H2o平台的一些R语言实现,网上已有一篇H2o的demo文件.笔者在这多贴一些案例,并且把自己实践的一些小例子贴出来. 关于H2o平台长啥样,可以看H2o的官网,关于深度学习长啥样,可以看一些教程,比如ParallelR博客之中的解析. 下面主要是贴几个案例,让大家看看. ----------…
<深入浅出深度学习原理剖析与Python实践>介绍了深度学习相关的原理与应用,全书共分为三大部分,第一部分主要回顾了深度学习的发展历史,以及Theano的使用:第二部分详细讲解了与深度学习相关的基础知识,包括线性代数.概率论.概率图模型.机器学习和最优化算法:在第三部分中,针对若干核心的深度学习模型,如自编码器.受限玻尔兹曼机.递归神经网络和卷积神经网络等进行详细的原理分析与讲解,并针对不同的模型给出相应的具体应用. <深入浅出深度学习:原理剖析与Python实践>适合有一定高等数…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 现今最主流的处理图像数据的技术当属深度神经网络了,尤其是卷积神经网络CNN尤为出名.本文将通过讲解CNN的介绍以及使用keras搭建CNN常用模型LeNet-5实现对MNist数据集分类,从而使得读者更好的理解CNN. 1.CNN的介绍 CNN是一种自动化提取特征的机器学习模型.首先我们介绍CNN所用到一些基本结构单元: 1.1卷积层:在卷积层中,有一个重要的概念…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 笔者:Ray 介绍 通过对前面文章的学习,对深度神经网络(DNN)和卷积神经网络(CNN)有了一定的了解,也感受到了这些神经网络在各方面的应用都有不错的效果.然而这些网络都有一个共同的特点:每一层的神经元之间是相互独立的,如输入层的神经元彼此之间是独立的.然而,现实世界中很多元素之间都是有相互联系的.比如一部连续剧的内容,上一集和这一集的内容会有一定的联系:同样的…