SVM之不一样的视角】的更多相关文章

在上一篇学习SVM中 从最大间隔角度出发,详细学习了如何用拉格朗日乘数法求解约束问题,一步步构建SVM的目标函数,这次尝试从另一个角度学习SVM. 回顾监督学习要素 数据:(\(x_i,y_i\)) 模型 \(\hat{y_i} = f(x_i)\) 目标函数(损失函数+正则项) \(l(y_i,\hat{y}_i)\) 用优化算法求解 SVM之Hinge Loss 模型 svm要寻找一个最优分离超平面,将正样本和负样本划分到超平面两侧 \[f(x) = \bold w^\top \cdot \…
SVM的另一种解释 前面已经较为详细地对SVM进行了推导,前面有提到SVM可以利用梯度下降来进行求解,但并未进行详细的解释,本节主要从另一个视角对SVM进行解释,首先先回顾之前有关SVM的有关内容,然后从机器学习的三步走的角度去对SVM进行一个解释. 那么对于传统的机器学习,每个方法最大区别就是损失函数的选取,因此SVM可以看成是另一种损失函数的方法,这种损失函数就是Hinge Loss.另外SVM另一个特点就是使用了Kenel trick. 0. SVM内容回顾 前面说了SVM(主要是二分类)…
背景 支持向量机(SVM)背后的数学知识比较复杂,之前尝试过在网上搜索一些资料自学,但是效果不佳.所以,在我的数据挖掘工具箱中,一直不会使用SVM这个利器.最近,台大林轩田老师在Coursera上的机器学习技法课程上有很详细的讲授SVM的原理,所以机会难得,一定要好好把握这次机会,将SVM背后的原理梳理清楚并记录下来.这篇文章总结第一讲linear hard SVM的相关内容.     最好的分割线 之前有讲过PLA,即在线性可分的数据中,找到一条线,能够区分开正负样本,如下所示: 上面三条线,…
一.问题的描述 从最一般的定义上说,一个求最小值的问题就是一个优化问题(也叫寻优问题,更文绉绉的叫法是规划——Programming),它同样由两部分组成,目标函数和约束条件,可以用下面的式子表示: (式1) 约束条件用函数c来表示,就是constrain的意思啦.你可以看出一共有p+q个约束条件,其中p个是不等式约束,q个等式约束. 关于这个式子可以这样来理解:式中的x是自变量,但不限定它的维数必须为1(视乎你解决的问题空间维数,对我们的文本分类来说,那可是成千上万啊).要求f(x)在哪一点上…
前面几节我们讨论了SVM原理.求解线性分类下SVM的SMO方法.本节将分析SVM处理非线性分类的相关问题. 一般的非线性分类例如以下左所看到的(后面我们将实战以下这种情况): 能够看到在原始空间中你想用一个直线分类面划分开来是不可能了,除非圆.而当你把数据点映射一下成右图所看到的的情况后,如今数据点明显看上去是线性可分的,那么在这个空间上的数据点我们再用前面的SVM算法去处理,就能够得到每一个数据点的分类情况了,而这个分类情况也是我们在低维空间的情况.也就是说,单纯的SVM是不能处理非线性问题的…
在前面的几篇文章中,我们介绍了EasyPR中车牌定位模块的相关内容.本文开始分析车牌定位模块后续步骤的车牌判断模块.车牌判断模块是EasyPR中的基于机器学习模型的一个模块,这个模型就是作者前文中从机器学习谈起中提到的SVM(支持向量机). 我们已经知道,车牌定位模块的输出是一些候选车牌的图片.但如何从这些候选车牌图片中甄选出真正的车牌,就是通过SVM模型判断/预测得到的.   图1 从候选车牌中选出真正的车牌 简单来说,EasyPR的车牌判断模块就是将候选车牌的图片一张张地输入到SVM模型中,…
从前面SVM学习中可以看出来,SVM是一种典型的两类分类器.而现实中要解决的问题,往往是多类的问题.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 以文本分类为例,现成的方法有很多,其中一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多目标函数的优化问题,一次性得到多个分类面,就像下图这样: 多个超平面把空间划分为多个区域,每个区域对应一个类别,给一篇文章,看它落在哪个区域就知道了它的分类. 只可惜这种算法还基本停留在纸面上,因为一次性求解的方法计算量实在太大,大到无法实用的地步…
核函数(Kernels) 定义 1.1 (核或正定核) 设是中的一个子集,称定义在上的函数是核函数,如果存在一个从到Hilbert空间的映射 使得对任意的,都成立.其中表示Hilbert空间中的内积. 在低纬度空间里不可分的问题,我们可以通过将其向高纬度空间转化,使其线性可分.而转换的关键是找到低维空间向高纬的映射方法. 考虑我们最初在“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格.假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来…
最优间隔分类器(optimal margin classifier) 重新回到SVM的优化问题: 我们将约束条件改写为: 从KKT条件得知只有函数间隔是1(离超平面最近的点)的线性约束式前面的系数,也就是说这些约束式,对于其他的不在线上的点(),极值不会在他们所在的范围内取得,此时前面的系数.注意每一个约束式实际就是一个训练样本. 看下面的图: 实线是最大间隔超平面,假设×号的是正例,圆圈的是负例.在虚线上的点就是函数间隔是1的点,那么他们前面的系数,其他点都是.这三个点称作支持向量.构造拉格朗…
在一个线性分类器中,可以看到SVM形成的思路,并接触很多SVM的核心概念.用一个二维空间里仅有两类样本的分类问题来举个小例子.如图所示 和是要区分的两个类别,在二维平面中它们的样本如上图所示.中间的直线就是一个分类函数,它可以将两类样本完全分开. 实际上,一个线性函数是一个实值函数,而我们的分类问题需要离散的输出值,例如用1表示某个样本属于类别,而用0表示不属于(不属于也就意味着属于),这时候只需要简单的在实值函数的基础上附加一个阈值即可,通过分类函数执行时得到的值大于还是小于这个阈值来确定类别…