softmax和分类模型】的更多相关文章

线性回归 基础知识 实现过程 学习笔记 批量读取 torch_data = Data.TensorDataset(features, labels) dataset = Data.DataLoader(torch_data, batch_size, shuffle=True) 定义模型的两种常见写法 这两种方法是我比较喜欢的方法. 其中有两点需要注意: 虽说他们在定义时,输入和输出的神经元个数是一样的,但print(net)结果是不同的,法二有Sequential外层. 由于第一点的原因,这也导…
softmax和分类模型 内容包含: softmax回归的基本概念 如何获取Fashion-MNIST数据集和读取数据 softmax回归模型的从零开始实现,实现一个对Fashion-MNIST训练集中的图像数据进行分类的模型 使用pytorch重新实现softmax回归模型 softmax的基本概念 分类问题 一个简单的图像分类问题,输入图像的高和宽均为2像素,色彩为灰度. 图像中的4像素分别记为\(x_1, x_2, x_3, x_4\). 假设真实标签为狗.猫或者鸡,这些标签对应的离散值为…
softmax和分类模型 内容包含: softmax回归的基本概念 如何获取Fashion-MNIST数据集和读取数据 softmax回归模型的从零开始实现,实现一个对Fashion-MNIST训练集中的图像数据进行分类的模型 使用pytorch重新实现softmax回归模型 **本小节用到的数据下载 1.涉及语句 import d2lzh1981 as d2l 数据1 : d2lzh1981 链接:https://pan.baidu.com/s/1LyaZ84Q4M75GLOO-ZPvPoA…
内容太多,捡重要的讲. 在分类问题中,通常用离散的数值表示类别,这里存在两个问题.1.输出值的范围不确定,很难判断值的意义.2.真实标签是离散值,这些离散值与不确定的范围的输出值之间的误差难以衡量. softmax运算符解决了这两个问题.它把输出值变成了值为正且和为1的概率分布. 对于一个分类问题,假设有a个特征,b个样本,c个输出,单层的全连接网络,那么有a*b个w(权重),c个b(偏差). 为了提升计算效率,常对小批量数据做矢量计算.softmax回归的矢量计算表达式如下. 计算loss用交…
线性回归模型适用于输出为连续值的情景,例如输出为房价.在其他情景中,模型输出还可以是一个离散值,例如图片类别.对于这样的分类问题,我们可以使用分类模型,例如softmax回归. 为了便于讨论,让我们假设输入图片的尺寸为2×2,并设图片的四个特征值,即像素值分别为\(x_1,x_2,x_3,x_4\).假设训练数据集中图片的真实标签为狗.猫或鸡,这些标签分别对应离散值\(y_1,y_2,y_3\). 单样本分类的矢量计算表达式 针对上面的问题,假设分类模型的权重和偏差参数分别为: \[W=\beg…
                                                    大白话5分钟带你走进人工智能-第二十节逻辑回归和Softmax多分类问题(5) 上一节中,我们讲解了逻辑回归的优化,本节的话我们讲解逻辑回归做多分类问题以及传统的多分类问题,我们用什么手段解决. 先看一个场景,假如我们现在的数据集有3个类别,我们想通过逻辑回归建模给它区分出来.但我们知道逻辑回归本质上是区分二分类的算法模型.难道没有解决办法了吗?办法还是有的,既然想分出3类,我们姑且称这3个类…
前言 在上一次的测试中,我们按照官方给的流程,使用EasyDL快速实现了一个具有性别检测功能的人脸识别系统,那么今天,我们将要试一下通过Paddlepaddle从零开始,训练一个自己的多分类模型,并进行嵌入式部署. 整个训练过程和模型在:https://aistudio.baidu.com/aistudio/projectDetail/61103 下面详细介绍模型训练的过程. 数据集准备 我们使用CIFAR10数据集.CIFAR10数据集包含60,000张32x32的彩色图片,10个类别,每个类…
实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) 文本分词 正向/逆向/双向最大匹配; 基于理解的句法和语义分析消歧: 基于统计的互信息/CRF方法: WordEmbedding + Bi-LSTM+CRF方法 去停用词:维护一个停用词表 (2)特征提取 特征选择的基本思路是根据某个评价指标独立的对原始特征项(词项)进行评分排序,从中选择得分最高的…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记源于CDA-DSC课程,由常国珍老师主讲.该训练营第一期为风控主题,培训内容十分紧凑,非常好,推荐:CDA数据科学家训练营 ------------------------------------------ 一.风控建模流程以及分类模型建设 1.建模流程 该图源自课程讲义.主要将建模过程分为了五类.数据准备.变量粗筛.变量清洗.变量细筛…
Spark中常见的三种分类模型:线性模型.决策树和朴素贝叶斯模型. 线性模型,简单而且相对容易扩展到非常大的数据集:线性模型又可以分成:1.逻辑回归:2.线性支持向量机 决策树是一个强大的非线性技术,训练过程计算量大并且较难扩展(幸运的是,MLlib会替我们考虑扩展性的问题),但是在很多情况下性能很好: 朴素贝叶斯模型简单.易训练,并且具有高效和并行的优点(实际中,模型训练只需要遍历所有数据集一次).当采用合适的特征工程,这些模型在很多应用中都能达到不错的性能.而且,朴素贝叶斯模型可以作为一个很…