BitMap算法及其实现(Python)】的更多相关文章

BitMap概述 本文介绍 BitMap 算法的应用背景,算法思想和相关实现细节. 概括而言,BitMap 主要用来解决海量数据中元素查询,去重.以及排序等问题.这里对海量数据场景的强调,似乎暗示了这个算法对空间的利用相当的精巧和经济,事实确实如此. BitMap算法 本来数据序列的排序是一个平凡的任务,现有的多种排序算法,都有各自擅场能适应不同情形的具体要求.但我们考虑这样一个场景:有一台内存为 4 GB 的 PC,其硬盘中的一个存储了 30 亿个无符号整型数据文件,这些整数一行一个且无重复.…
概述 所谓的BitMap算法就是位图算法,简单说就是用一个bit位来标记某个元素所对应的value,而key即是该元素,由于BitMap使用了bit位来存储数据,因此可以大大节省存储空间,这是很常用的数据结构,比如用于Bloom Filter中.用于无重复整数的排序等等.bitmap通常基于数组来实现,数组中每个元素可以看成是一系列二进制数,所有元素组成更大的二进制集合. 基本思想 我用一个简单的例子来详细介绍BitMap算法的原理.假设我们要对0-7内的5个元素(4,7,2,5,3)进行排序(…
工作中有用到Redis滤重队列. 原来的方法如下: 方法一 为了保证操作原子性,使用Redis执行Lua脚本. 在脚本中的逻辑是,如果队列不超过某个数值,进行一次lrem操作(队列使用list结构),然后将新元素入列. 优点: 简单,直观. 缺陷: lrem的时间复杂度为O(N),N为队列中的元素个数:所以,性能一般. 因为防止队列内容过多,防止发生N级别的删除操作,限制了一个滤重的阀值,如果超过这个阀值就不能使用滤重功能. 方法二 为了解决以上痛点,新玩法为: 为了保证操作原子性,使用Redi…
概述 所谓bitmap就是用一个bit位来标记某个元素对应的value,而key即是这个元素.由于采用bit为单位来存储数据,因此在可以大大的节省存储空间 算法思想 32位机器上,一个整形,比如int a;在内存中占32bit,可以用对应的32个bit位来表示十进制的0-31个数,bitmap算法利用这种思想处理大量数据的排序与查询 优点: 效率高,不许进行比较和移位 占用内存少,比如N=10000000;只需占用内存为N/8 = 1250000Bytes = 1.2M,如果采用int数组存储,…
原文:经典算法题每日演练--第十一题 Bitmap算法 在所有具有性能优化的数据结构中,我想大家使用最多的就是hash表,是的,在具有定位查找上具有O(1)的常量时间,多么的简洁优美, 但是在特定的场合下: ①:对10亿个不重复的整数进行排序. ②:找出10亿个数字中重复的数字. 当然我只有普通的服务器,就算2G的内存吧,在这种场景下,我们该如何更好的挑选数据结构和算法呢? 一:问题分析 这年头,大牛们写的排序算法也就那么几个,首先我们算下放在内存中要多少G: (10亿 * 32)/(1024*…
什么是 BigMap 算法 所谓 BitMap 就是用一个 bit 位来标记某个元素对应的 value,而 key 即是这个元素.由于采用bit为单位来存储数据,因此在可以大大的节省存储空间. 算法思想 32位机器上,一个整形,比如 int a; 在内存中占32bit,可以用对应的32个bit位来表示十进制的0-31个数,bitmap算法利用这种思想处理大量数据的排序与查询. 优点: 效率高,不许进行比较和移位 占用内存少,比如N=10000000;只需占用内存为N/8 = 1250000Byt…
上篇我们讲了BitMap是如何对数据进行存储的,没看过的可以看一下[算法与数据结构专场]BitMap算法介绍 这篇我们来讲一下BitMap这个数据结构的代码实现. 回顾下数据的存储原理 一个二进制位对应一个非负数n,如果n存在,则对应的二进制位的值为1,否则为0.这个时候,我们的第一个问题:我们在使用byte,int,short,long等这些数据类型在存储数据的时候,他们最小的都要占用一个字节的内存,也就是8个bit,也就是说,最小的操作单位是8个bit.根本就没有可以一个一个bit位操作的数…
一.灰度世界算法 ① 算法原理 灰度世界算法以灰度世界假设为基础,该假设认为:对于一幅有着大量色彩变化的图像,R,G,B三个分量的平均值趋于同一灰度值Gray.从物理意义上讲,灰色世界法假设自然界景物对于光线的平均反射的均值在总体上是个定值,这个定值近似地为“灰色”.颜色平衡算法将这一假设强制应用于待处理图像,可以从图像中消除环境光的影响,获得原始场景图像. 一般有两种方法确定Gray值 1) 使用固定值,对于8位的图像(0~255)通常取128作为灰度值 2) 计算增益系数,分别计算三通道的平…
1. DeepFM算法的提出 由于DeepFM算法有效的结合了因子分解机与神经网络在特征学习中的优点:同时提取到低阶组合特征与高阶组合特征,所以越来越被广泛使用. 在DeepFM中,FM算法负责对一阶特征以及由一阶特征两两组合而成的二阶特征进行特征的提取:DNN算法负责对由输入的一阶特征进行全连接等操作形成的高阶特征进行特征的提取. 具有以下特点: 结合了广度和深度模型的优点,联合训练FM模型和DNN模型,同时学习低阶特征组合和高阶特征组合. 端到端模型,无需特征工程. DeepFM 共享相同的…
一.bitmap算法思想 32位机器上,一个整形,比如int a; 在内存中占32bit位,可以用对应的32bit位对应十进制的0-31个数,bitmap算法利用这种思想处理大量数据的排序与查询.  优点:1.运算效率高,不许进行比较和移位:2.占用内存少,比如N=10000000:只需占用内存为N/8=1250000Byte=1.25M.     缺点:所有的数据不能重复.即不可对重复的数据进行排序和查找. 比如:           第一个4就是           000000000000…