Python 实现深度学习】的更多相关文章

从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Inceptionism.在这篇文章中,我们将讨论几个不同的深度学习框架,库以及工具. 深度学习是机器学习和人工智能的一种形式,利用堆积在彼此顶部的神经网络的多个隐藏层来尝试形成对数据更深层次的“理解”. 最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的…
有一定Python和TensorFlow基础的人看应该很容易,各领域的应用,但比较广泛,不深刻,讲硬件的部分可以作为入门人的参考. <Keras快速上手基于Python的深度学习实战>系统地讲解了深度学习的基本知识.建模过程和应用,并以深度学习在推荐系统.图像识别.自然语言处理.文字生成和时间序列中的具体应用为案例,详细介绍了从工具准备.数据获取和处理到针对问题进行建模的整个过程和实践经验. <Keras快速上手>PDF,531页,带书签目录,彩色配图,文字可以复制. 配套源代码和…
Matlab和Python都有一些关于深度学习的开源的解决方案(caffe\DeepMind\TensorFlow),基于哪个开展应用研究好?…
Python实战及机器学习(深度学习)技术 一,时间地点:2020年01月08日-11日 北京(机房上课,每人一台电脑进行实际案例操作,赠送 U盘拷贝资料及课件和软件)二.课程目标:1.python基础学习 2.人工智能与机器学习理论及实战3.回归算法 4.KNN分类算法5.决策树算法 6.集成算法与随机森林7.K-means聚类算法 8.支持向量机SVM9.泰坦尼克号获救预测案例 10.深度学习基础-神经网络介绍11.Tensorflow基础应用 12.卷积神经网络CNN应用13.长短时记忆网…
前言 最近由于疫情被困在家,于是准备每天看点专业知识,准备写成博客,不定期发布. 博客大概会写5~7篇,主要是"解剖"一些深度学习的底层技术.关于深度学习,计算机专业的人多少都会了解,知道Conv\Pool的过程,也看过论文,做过实验或是解决方案.在写的各种卷积网路 时候,有没有问问自己:这些网络到底是怎么"运作"起来的?如果自己要实现一个具备基本功能的神经网络应该怎么去实现? 知道事物的表面现象,不知事物的本质及其产生的原因是一件很可悲的事情,正如鲁迅所说:Wha…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] 1. 分享个人对于人工智能领域的算法综述:如果你想开始学习算法,不妨先了解人工智能有哪些方向? 1.1 机器学习综述 1.2 深度学习综述 1.3 强化学习综述 1.4 知识图谱综述 1.5 对接其他前沿技术 2. 分享个人对于新手入门学习路线和学习资源的推荐 2.1 python编程学习路线及笔记 2.2 机器学习专题学习路线及笔记 2.3 深度学习专题学习路线及笔记 2.…
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile import tensorflow.contrib.slim as slim # 加载通过TensorFlow-Slim定义好的inception_v3模型. import tensorflow.contrib.slim.python.slim.nets.incepti…
import tensorflow as tf INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE_SIZE = 28 NUM_CHANNELS = 1 NUM_LABELS = 10 CONV1_DEEP = 32 CONV1_SIZE = 5 CONV2_DEEP = 64 CONV2_SIZE = 5 FC_SIZE = 512 def inference(input_tensor, train, regularizer): with tf.variable_s…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.9…
import tensorflow as tf a = tf.constant([1.0, 2.0], name="a") b = tf.constant([2.0, 3.0], name="b") result = a + b print(result) import tensorflow as tf g1 = tf.Graph() with g1.as_default(): v = tf.get_variable("v", [1], init…
这两天为了搭载深度学习的Python架构花了不少功夫,但是Theano对Python以及nunpy的版本都有限制,所以只能选用版本较新的python和nunpy以确保不过时.但是最新版Python和最新版numpy有点不完善,很多安装步骤都要在命令行里完成,所以花了我很多时间,为了祭奠我安装numpy逝去的青春,特写此日志,确保以后的青春不再逝去.    先说说python的安装,我是64位windows系统.所以选用的是https://www.python.org/downloads/rele…
30个深度学习库:按Python.C++.Java.JavaScript.R等10种语言分类 包括 Python.C++.Java.JavaScript.R.Haskell等在内的一系列编程语言的深度学习库. 一.Python1.Theano 是一种用于使用数列来定义和评估数学表达的 Python 库.它可以让 Python 中深度学习算法的编写更为简单.很多其他的库是以 Theano 为基础开发的:Keras 是类似 Torch 的一个精简的,高度模块化的神经网络库.Theano 在底层帮助其…
可以画画啊!可以画画啊!可以画画啊! 对,有趣的事情需要讲三遍. 事情是这样的,通过python的深度学习算法包去训练计算机模仿世界名画的风格,然后应用到另一幅画中,不多说直接上图! 这个是世界名画"毕加索的自画像"(我也不懂什么是世界名画,但是我会google呀哈哈),以这张图片为模板,让计算机去学习这张图片的风格(至于怎么学习请参照这篇国外大牛的论文http://arxiv.org/abs/1508.06576)应用到自己的这张图片上. 结果就变成下面这个样子了 咦,吓死宝宝了,不…
Theano https://github.com/Theano/Theano 描述: Theano 是一个python库, 允许你定义, 优化并且有效地评估涉及到多维数组的数学表达式. 它与GPUs一起工作, 并且在符号微分方面表现优秀. 文档: http://deeplearning.net/software/theano/ 概述: Theano是数值计算的主力, 它支持了许多我们列表当中的其他的深度学习框架. Theano由 frederic bastien 创建, 这是蒙特利尔大学机器学…
注:本文全原创,作者:Noah Zhang  (http://www.cnblogs.com/noahzn/) 这两天在安装Python的深度学习库:Theano.尝试了好多遍,CMake.MinGW.BLAS.APLACK等等都装了试着自己编译,网上教程也搜了一大堆,但都没成功.昨晚回家清理干净电脑,又小心翼翼地装了一遍,成功,今天来公司又装了一遍,也成功,现把步骤记录如下: (注:本步骤适用于WIN7 64位操作系统,Python版本为3.4.3 64bit) 1. 请将电脑清理干净.包括之…
Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 最近tensorflow团队出了一个model项目,和这个课程无关,但是可以参考 框架: TensorFlow 谷歌出品的基于Pytho…
引言:AlphaGo在2017年年初化身Master,在弈城和野狐等平台上横扫中日韩围棋高手,取得60连胜,未尝败绩.AlphaGo背后神秘的推动力就是TensorFlow--Google于2015年11月开源的机器学习及深度学习框架.  TensorFlow在2015年年底一出现就受到了极大的关注,在一个月内获得了GitHub上超过一万颗星的关注,目前在所有的机器学习.深度学习项目中排名第一,甚至在所有的Python项目中也排名第一.本文将带我们简单了解下TensorFlow,并与其他主流深度…
Batch_Size(批尺寸)是机器学习中一个重要参数,涉及诸多矛盾,下面逐一展开. 首先,为什么需要有 Batch_Size 这个参数? Batch 的选择,首先决定的是下降的方向.如果数据集比较小,完全可以采用全数据集 ( Full Batch Learning )的形式,这样做至少有 2 个好处:其一,由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向.其二,由于不同权重的梯度值差别巨大,因此选取一个全局的学习率很困难. Full Batch Learning 可以…
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自TensorFlow于2015年底正式开源,距今已有一年多,这期间TensorFlow不断给人以惊喜.在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准.本文节选自<TensorFlow实战>第二章. 主流深度学习框架对比 深度学习研究的热潮持续高涨,各种开源…
PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen NLP,用于概率图模型的Pyro,扩展了PyTorch的功能.通过学习<深度学习入门之PyTorch>,可以从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型.学到机器学习中的线性回归和 Logistic 回归.深度…
github上热门深度学习项目 项目名 Stars 描述 TensorFlow 29622 使用数据流图进行可扩展机器学习的计算. Caffe 11799 Caffe:深度学习的快速开放框架. [Neural Style](https://github.com/jcjohnson/neural-style) 10148 火炬实现神经风格算法. Deep Dream 9042 深梦. Keras 7502 适用于Python的深度学习库.Convnets,递归神经网络等等.在Theano和Tens…
深度学习的激活函数  :sigmoid.tanh.ReLU .Leaky Relu.RReLU.softsign .softplus.GELU 2019-05-06 17:56:43 wamg潇潇 阅读数 652更多 分类专栏: python机器学习 深度学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_29831163/article/details/89887655 [ …
20 个顶尖的 Python 机器学习开源项目 机器学习 2015-06-08 22:44:30 发布 您的评价: 0.0 收藏 1收藏 我们在Github上的贡献者和提交者之中检查了用Python语言进行机器学习的开源项目,并挑选出最受欢迎和最活跃的项目.” 图1:在GitHub上用Python语言机器学习的项目,图中颜色所对应的Bob, Iepy, Nilearn, 和NuPIC拥有最高的价值. 1. Scikit-learn www.github.com/scikit-learn/scik…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻译等).语音识别.序列生成.序列分析等众多领域! [再说一句]本文主要介绍深度学习中序列模型的演变路径,和往常一样,不会详细介绍各算法的具体实现,望理解! 一.循环神经网络RNN 1. RNN标准结构 传统神经网络的前一个输入和后一个输入是完全没有关系的,不能处理序列信息(即前一个输入和后一个输入是…
序言 对于想要入门Python或者深度学习的初学者而言,配置环境一直是一个令人头疼的问题.相信有许多人经历过安装第三方包失败,安装好了却在使用中报错,安装CUDA.tensorflow.pytorch版本不匹配等等令人头大的问题,我也曾被这些问题所困扰.经过这两三年时间中反复重装环境的痛苦过程,直到现在我才逐渐能够独立.流畅地配制出一个令人满意的环境.在这个过程中,我也帮助了许多遇到这些问题的朋友,收获了一些经验教训,因此我希望将这一完整的过程写成博客,帮助在这方面遇到困难的人. 在这个系列的博…
新增了六个教程: TensorFlow 2 和 Keras 高级深度学习 零.前言 一.使用 Keras 入门高级深度学习 二.深度神经网络 三.自编码器 四.生成对抗网络(GAN) 五.改进的 GAN 六.纠缠表示 GAN 七.跨域 GAN 八.变分自编码器(VAE) 九.深度强化学习 十.策略梯度方法 十一.对象检测 十二.语义分割 十三.使用互信息的无监督学习 GCP 上的人工智能实用指南 零.前言 第 1 节:Google Cloud Platform 的基础 一.AI 和 GCP 概述…