机器学习 - Python 02】的更多相关文章

好了,咱们接着上一节的内容,继续学习机器学习中的Python语法部分.这一节算是Python语法的最后一节了.也就是说如果真的看懂了这两节的内容,理论上说就机器学习的领域或者方向,语言已经不是问题了.同时也意味着马上真正的进入机器学习的核心部分了.好了,那咱们接下来正式开始咱们的学习啦. Tuples Tuples是Python中的一种新的形式的数据collection(至少相对于C++, objective-C,Java是新的.其他的我就不敢肯定了,免得被打脸,哈哈).其实她和List几乎是一…
一 安装python2.7 去https://www.python.org/downloads/ 下载,然后点击安装,记得记住你的安装路径,然后去设置环境变量,这些自行百度一下就好了. 由于2.7没有pip ,所以最好装下.这是下载地址 https://pypi.python.org/pypi/pip#downloads.下载好之后点击开始,搜索 CMD .输入 python setup.py install 你在cmd里面输入pip会显示这个,这表示pip也没有设置环境变量,你只要去你pyth…
<Python机器学习手册--从数据预处理到深度学习> 这本书类似于工具书或者字典,对于python具体代码的调用和使用场景写的很清楚,感觉虽然是工具书,但是对照着做一遍应该可以对机器学习中python常用的这些库有更深入的理解,在应用中也能更为熟练. 以下是根据书上的代码进行实操,注释基本写明了每句代码的作用(写在本句代码之前)和print的输出结果(写在print之后).不一定严格按照书上内容进行,根据代码运行时具体情况稍作顺序调整,也加入了一些自己的理解. 如果复制到自己的环境下跑一遍输…
写这个系列是因为最近公司在搞技术分享,学习Spark,我的任务是讲PySpark的应用,因为我主要用Python,结合Spark,就讲PySpark了.然而我在学习的过程中发现,PySpark很鸡肋(至少现在我觉得我不会拿PySpark做开发).为什么呢?原因如下: 1.PySpark支持的算法太少了.我们看一下PySpark支持的算法:(参考官方文档) 前面两个pyspark.sql和pyspark.streaming是对sql和streaming的支持.主要是读取数据,和streaming处…
  kmeans聚类相信大家都已经很熟悉了.在Python里我们用kmeans通常调用Sklearn包(当然自己写也很简单).那么在Spark里能不能也直接使用sklean包呢?目前来说直接使用有点困难,不过我看到spark-packages里已经有了,但还没有发布.不过没关系,PySpark里有ml包,除了ml包,还可以使用MLlib,这个在后期会写,也很方便. 首先来看一下Spark自带的例子: from pyspark.mllib.linalg import Vectors from py…
随着机器学习的逐日升温,各种相关开源包也是层出不群,面对如此多种类的工具包,该如何选择,有的甚至还知之甚少或者不知呢,本文简单汇总了一下当下使用比较多的Python版本机器学习工具包,供大家参看,还很不全不详尽,会持续更新,也欢迎大家补充,多谢多谢!~~~ scikit-learn: 基于python的机器学习模块,基于BSD开源许可证.这个项目最早由DavidCournapeau 在2007 年发起的,目前也是由社区自愿者进行维护.基本功能主要被分为六个部分,分类,回归,聚类,数据降维,模型选…
一.R语言的mlr packages install.packages("mlr")之后就可以看到R里面有哪些机器学习算法.在哪个包里面. a<-listLearners() 这个包是听CDA网络课程<R语言与机器学习实战>余文华老师所述,感觉很棒,有待以后深入探讨.以下表格是R语言里面,52个机器学习算法的来源以及一些数据要求. class name short.name package note type installed numerics factors or…
开源机器学习库介绍 MLlib in Apache Spark:Spark下的分布式机器学习库.官网 scikit-learn:基于SciPy的机器学习模块.官网 LibRec:一个专注于推荐算法的java开源库.官网 BigML:连接外部服务器的库.官网 Caffe:考虑了代码清洁.可读性及速度的深度学习框架.官网 TensorFlow:该系统旨在促进对机器学习的研究,同时也让机器学习研究原型过渡到生产系统更加高效容易.官网 解决特定问题的工具 LIBLINEAR  官网  台大出品 LIBS…
机器学习K近邻算法的实现主要是参考<机器学习实战>这本书. 一.K近邻(KNN)算法 K最近邻(k-Nearest Neighbour,KNN)分类算法,理解的思路是:如果一个样本在特征空间中的K个最相似(即特征空间最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 我们采用一个图来进行说明(如下): 图中的蓝色小正方形和红色的小正方形属于两类不同的样本数据,图正中间的绿色的圆代表的是待分类的数据.现在我们可以根据K最近邻算法来判断绿色的圆属于哪一类数据? 如果K=3,绿色圆点的…
这篇文章主要是结合机器学习实战将推荐算法和SVD进行对应的结合 不论什么一个矩阵都能够分解为SVD的形式 事实上SVD意义就是利用特征空间的转换进行数据的映射,后面将专门介绍SVD的基础概念.先给出python,这里先给出一个简单的矩阵.表示用户和物品之间的关系 这里我自己有个疑惑? 对这样一个DATA = U(Z)Vt 这里的U和V真正的几何含义  :  书上的含义是U将物品映射到了新的特征空间, V的转置  将 用户映射到了新的特征空间 以下是代码实现.同一时候SVD还能够用于降维,降维的操…