RMQ算法使用ST表实现】的更多相关文章

解题关键:rmq模板题,可以用st表,亦可用线段树等数据结构 log10和log2都可,这里用到了对数的换底公式 类似于区间dp,用到了倍增的思想 $F[i][j] = \min (F[i][j - 1],F[i + 1 <  < (j - 1)][j - 1])$ #include<cstdio> #include<cstring> #include<algorithm> #include<cstdlib> #include<cmath&…
RMQ RMQ (Range Minimum Query),指求区间最小值.普通的求区间最小值的方法是暴力. 对于一个数列: \[ A_1,~ A_2,~ A_3,~ \cdots,~ A_n \] 对于一个给定的区间\([l, ~r], ~1≤ l ≤r ≤ n\),\(\min \{A_l, A_{l + 1}, \cdots,A_r\}\)的计算就是RMQ问题. 此解法为\(\text{Sparse-Table}\)解法,简称\(ST\)表. 预处理:预处理为对数据进行\(n\log n\…
[算法模板]ST表 ST表和线段树一样,都能解决RMQ问题(范围最值查询-Range Minimum Query). 我们开一个数组数组\(f[maxn][maxn\log_2]\)来储存数据. 定义\(f[i][j]\)代表从\(i\)开始的\(2^{j}\)位这个区间的最大值. 初始化 因为\(f[i][0]=a[i]\),所以有: \[ f[i][j]=max(f[i][j-1],f[i+2^{j-1}][j-1]) \] 通过这个转移方程即可构造出\(f\). 查询 查询区间\([l,r…
2017-08-26 21:44:45 writer:pprp RMQ问题就是区间最大最小值查询问题: 这个SparseTable算法构造一个表,F[i][j] 表示 区间[i, i + 2 ^ j -1]的最大或者最小值 ST分为两个部分 1.nlogn的预处理 预处理主要用到了动态规划,二分区间每个区间长度为 2 ^ (j -1)找到一个递推关系: F[i][j] = min(F[i][j - 1],F[i + (1 << (j - 1))][j - 1]); 2.查询部分更为巧O(1)得…
\(0.\) RMQ问题 P1816 人话翻译 给定一个长度为\(n\)的数列\(a\),然后有\(m\)组询问,每次询问一个区间\([l,r]\)的最小值. 其中\(m,n\leq10^5\) \(1.\) 暴力做法 很显然,暴力做法就是便历 \(\max\limits_{l\leq i\leq r}a_i\) .这个做法最坏时间复杂度将会高达\(O(n^2)\).很显然,这对于\(1e5\)的数据范围要炸 \(2.\) 正解 线段树 如果不知道什么是线段树,请点击这里 线段树 对于这种区间信…
$RMQ$问题:给定一个长度为$N$的区间,$M$个询问,每次询问$[L_i,R_i]$这段区间元素的最大值/最小值. $RMQ$的高级写法一般有两种,即为线段树和$ST$表. 本文主要讲解一下$ST$表的写法.(以区间最大值为例) $ST$表:一种利用$dp$思想求解区间最值的倍增算法. 定义:$f(i,j)$表示$[i,i+2^{j}-1]$这段长度为$2^{j}$的区间中的最大值. 预处理:$f(i,0)=a_i$.即$[i,i]$区间的最大值就是$a_i$. 状态转移:将$[i,j]$平…
RMQ(Range Minimum/Maximum Query)问题指的是一类对于给定序列,要求支持查询某区间内的最大.最小值的问题.很显然,如果暴力预处理的话复杂度为 \(O(n^2)\),而此类问题数据又往往很大,不仅会爆时间,数组也存不下.我们需要一种能够 \(O(n\log n)\) 甚至 \(O(n)\) 预处理的数据结构,这便是ST表. ST表(Sparse Table,应译为S表)是一种可以以 \(O(n\log n)\) 的优秀复杂度预处理出静态区间上的最大.最小值的算法,其核心…
 概述: RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值.对于一次查询,可以暴力地O(n),但是当查询次数很多的时候,这样的暴力就无法进行了.这时我们可以通过RMQ算法来解决这个问题. RMQ(ST):(关于学习RMQ的博客:框架即讲解比较详细 , 具体代码比较好) ST(Sparse Table)算法是一个非常有名的在线处理RMQ…
题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq10^5\). \(Solution\) 一个集合直径的两端点,在被划分为两个集合后一定是两个集合直径的四个端点中的两个. 即假设将\(S\)分为两个集合后,另外两个集合的直径的两端点分别为a,b和c,d,那么\(S\)集合的直径的两端点一定是a,b,c,d中的两个. 证明类似树的直径. 所以信息可…
题面 在Byteland 一共有n 座城市,编号依次为1 到n,这些城市之间通过m 条单向公路连接. 对于两座不同的城市a 和b,如果a 能通过这些单向道路直接或间接到达b,且b 也能如此到达a,那么它们就会被认为是一对友好城市. Byteland 的交通系统十分特殊,第i 天只有编号在[li, ri] 的单向公路允许通行,请写一个程序,计算每天友好城市的对数. 注意:(a, b) 与(b, a) 没有区别. 70 Kosarajo算法 这是一个区别于tarjan算法的求强连通分量的算法. 流程…