神经网络入门——6and感知机】的更多相关文章

AND 感知器练习       AND 感知器的权重和偏置项是什么? 把权重(weight1, weight2)和偏置项 bias 设置成正确的值,使得 AND 可以实现上图中的运算.   在这个例子中,在上图中可以看出有两个输入(我们把第一列叫做 input1,第二列叫做 input2),根据感知器公式,我们可以计算输出. 首先,线性组合就是所有输入乘以权重后求和:linear_combination = weight1*input1 + weight2*input2,然后我们可以将该值传入加…
范例程序下载:http://files.cnblogs.com/gpcuster/ANN3.rar如果您有疑问,可以先参考 FAQ 如果您未找到满意的答案,可以在下面留言:) 0 目录人工神经网络入门(1) —— 单层人工神经网络应用示人工神经网络入门(2) —— 人工神经基本概念介绍人工神经网络入门(3) —— 多层人工神经网络应用示例人工神经网络入门(4) —— AForge.Net简介 1 介绍这篇文章中,我们将介绍一个用C#实现的框架AForge,利用这个框架,您可以方便地操作人工网络,…
今天看到一款神经网络入门游戏.BugBrain.在游戏中,你能够通过连接神经元.设置神经元阈值等建造虫子的大脑,让瓢虫.蠕虫.蚂蚁等完毕各种任务.下载下来玩了玩,难度真不是入门级的= =! 真心佩服作者的智商. 游戏官方主页 http://www.biologic.com.au/bugbrain/ (左下是蠕虫的大脑) (一个蚂蚁的大脑就如此复杂···) BugBrain游戏提供了一个很不错的游戏地图编辑器,和測试平台. 地图编辑器中玩家能够依据个人喜好,编辑你自己的虚拟世界.让你的小虫们生活在…
第一节.神经网络基本原理  1. 人工神经元( Artificial Neuron )模型  人工神经元是神经网络的基本元素,其原理可以用下图表示: 图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias ).则神经元i的输出与输入的关系表示为: 图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfe…
这是一篇关于CNN入门知识的博客,基本手法是抄.删.改.查,就算是自己的一个笔记吧,以后忘了多看看.   1.边界检测示例假如你有一张如下的图像,你想让计算机搞清楚图像上有什么物体,你可以做的事情是检测图像的垂直边缘和水平边缘. 卷积计算可以得到图像的边缘,下图0表示图像暗色区域,10为图像比较亮的区域,同样用一个3*3过滤器,对图像进行卷积,得到的图像中间亮,两边暗,亮色区域就对应图像边缘.     通过以下的水平过滤器和垂直过滤器,可以实现图像水平和垂直边缘检测:   在卷积神经网络中把这些…
1.神经网络最基本的原理也是函数拟合,所以lose function就显得非常重要了,我们训练的目的之一就是减小损失函数,常用的损失函数参考:https://www.cnblogs.com/hypnus-ly/p/8047214.html,比如entropy_cross,比较两个概率分布的差异,同时又使得反向传播时好计算. 2.神经网络训练都是以一个batch为训练单位,即一批一批的训练,那么反向传播时怎么计算导数呢?可以体会,这个batch轴对于w没有什么影响,对于b有一些影响.只不过反向传播…
权重和偏置 import numpy as np # 求x1 and x2 def AND(x1, x2): x = np.array([x1, x2]) w = np.array([0.5, 0.5]) b = -0.7 # tmp = w[0]*x[0] + w[1]*x[1] + b tmp = np.sum(w * x) + b if tmp <= 0: return 0 else: return 1 print(AND(0,0), AND(0,1), AND(1,0), AND(1,1…
第一张图包括8层LeNet5卷积神经网络的结构图,以及其中最复杂的一层S2到C3的结构处理示意图. 第二张图及第三张图是用tensorflow重写LeNet5网络及其注释. 这是原始的LeNet5网络: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输入图片数据,类别 x = tf.placeholder('float', [None, 784]…
非线性分类器(Non-linear hypotheses) 为什么使用非线性分类器 我们举几个栗子: 假如我们有一个数据空间如左上角坐标系所看到的,那么我们要的模型须要如右边公式所看到的的预測函数. 如果有n个特征那么计算二次多项式就有O(n^2)的复杂度.n能有多大? 我们来看以下这个栗子. 如果我们须要识别汽车,假如选取图像上两个点,那么就如左边坐标系所看到的,这没什么. 但实际上我们须要的数据空间时整张图片全部的像素.也就是如果图像是50∗50那么我们就有2500个像素点.也就是须要250…
神经网络剖析   训练神经网络主要围绕以下四个方面: 层,多个层组合成网络(或模型) 输入数据和相应的目标 损失函数,即用于学习的反馈信号 优化器,决定学习过程如何进行   如图 3-1 所示:多个层链接在一起组成了网络,将输入数 据映射为预测值.然后损失函数将这些预测值与目标进行比较,得到损失值,用于衡量网络预 测值与预期结果的匹配程度.优化器使用这个损失值来更新网络的权重.  …