exponential_decay(learning_rate,  global_steps, decay_steps, decay_rate, staircase=False, name=None) 使用方式: tf.tf.train.exponential_decay() 例子: tf.train.exponential_decay(self.config.e_lr, self.e_global_steps,self.config.decay_steps, self.config.decay…
exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None) 使用方式为 tf.train.exponential_decay( ) 在 Tensorflow 中,exponential_decay()是应用于学习率的指数衰减函数(实现指数衰减学习率). 在训练模型时,通常建议随着训练的进行逐步降低学习率.该函数需要`global_step`值来计算衰减的学习速…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
1.保存 将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.Saver() 在创建这个Saver对象的时候,有一个参数经常会用到,max_to_keep 参数,这个是用来设置保存模型的个数,默认为5,即 max_to_keep=5,保存最近的5个模型.如果想每训练一代(epoch)就想保存一次模型,则可以将 max_to_keep设置为None或者0,但是这样…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.Saver() 在创建这个Saver对象的时候,有一个参数我们经常会用到,就是 max_to_keep 参数,这个是用来设置保存模型的个数,默认为5,即 max_to_keep=5,保存最近的5个模型.如果你想每训练一代(epoch)就想保存一次模型,则可以将 max_to_keep设置为None或者0,如:…
原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ------------------------------------------------------------------------------------------------------------------ tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具…
在 subclassed_model.py 中,通过对 tf.keras.Model 进行子类化,设计了两个自定义模型. import tensorflow as tf tf.enable_eager_execution() # parameters UNITS = 8 class Encoder(tf.keras.Model): def __init__(self): super(Encoder, self).__init__() self.fc1 = tf.keras.layers.Dens…
Training | TensorFlow tf 下以大写字母开头的含义为名词的一般表示一个类(class) 1. 优化器(optimizer) 优化器的基类(Optimizer base class)主要实现了两个接口,一是计算损失函数的梯度,二是将梯度作用于变量.tf.train 主要提供了如下的优化函数: tf.train.Optimizer tf.train.GradientDescentOptimizer tf.train.AdadeltaOpzimizer Ada delta tf.…
学习率的三种调整方式:固定的,指数的,多项式的 def _configure_learning_rate(num_samples_per_epoch, global_step): """Configures the learning rate. Args: num_samples_per_epoch: The number of samples in each epoch of training. global_step: The global_step tensor. Re…