大意:给定n元素序列$a$, $1\le a_i \le n$, 定义函数$f(l,r)$表示范围在$[l,r]$以内的数构成的连通块个数, 求$\sum\limits_{i=1}^{n}\sum\limits_{j=i}^{n}f(i,j)$ 对于序列$a$中一个区间$[l,r]$, 假设最小值$mi$, 最大值$ma$, 它要想构成一个连通块的充要条件是$a[l-1],a[r+1]$不在$[mi,ma]$范围内, 可以得到贡献为$mi(n-ma+1)$. 但是显然不能暴力枚举所有区间, 我们…