题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^代替,不难看出 B[i]=st[i]^ed[i] 如果X[j]=1,假设j会影响i,那么X[j]*A[i][j]这一项应为1,所以A[i][j]应=1 输入别反! 注意A[i][i]=1 将系数矩阵化为上三角形式后,剩下的系数全为0的行数就是自由元的个数: 如果某一行系数全为零,增广矩阵最后一列对应…
http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被操作一次,记得a[i][i] = 1是必须的,因为开关i操作一次,本身肯定会变化一次. 所以有n个开关,就有n条方程, 每个开关的操作次数总和是:a[i][1] + a[i][2] + ... + a[i][n] 那么sum % 2就代表它的状态,需要和(en[i] - be[i] + 2) % 2…
题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> #include <cmath> #include <cstring> #include <cstdio> using namespace std; ],e[],g[][],n; int gauss() { int row,col; ,col=;row<n&&…
和上两题一样 Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第一行 一个数N(0 < N < 29) 第二行 N个0或者1的数,表示开始时N个开关状态. 第三行 N个0或者1的数,表示操作结束后N个开关的状态. 接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化.每组数据以 0 0 结束.  注意判断无解别把if放错位置 我的now表示当前该哪个方程组了,一开始是1确定一个变量就+1,答案应该是$2^{n-now+1}$才行…
题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #include <cstdio> #include <cctype> #include <bitset> #include <algorithm> const int N=1004,M=2004; int n,m; char s[N]; std::bitset&l…
建立方程组消元,结果为2 ^(自由变元的个数) - 1 采用高斯消元求矩阵的秩 方法一: #include<cstdio> #include<iostream> #include<cstdlib> #include<cstring> #include<string> #include<algorithm> #include<map> #include<queue> #include<vector>…
高斯消元. 自己只能想出来把每一个点看成一个变量,用Xi表示其状态,这样必定TLE,n^2 个变量,再加上3次方的高斯消元(当然,可以用bitset压位). 正解如下: 我们把地图划分成一个个的横条和竖条,对于点i,我们用Li,Ri分别表示横着和竖着穿过它的,显然,对于每一个点,有且仅有一个L块和R块穿过. 得到第一个方程    YLi = sigma(Xp) p属于Li,YRi = sigma(Xp) p属于Ri --> sigma(Xp) xor Yi = 0. 接着我们考虑, Si xor…
书上分析的太清楚,我都懒得写题解了.=_=|| #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; ; ; ]; ; void Init() { int m = sqrt(maxn + 0.5); ; i <= m; i++) if(!vis[i]) for(int j = i*i; j <= maxn; j…
题目链接:点击打开链接 白书的例题练练手. . . P161 #include <cstdio> #include <iostream> #include <algorithm> #include <math.h> #include <string.h> #include <algorithm> using namespace std; #define ll int #define LL long long const int mod…
题目链接:http://poj.org/problem?id=1830 题意:中文题诶- 思路:高斯消元解 mod2 方程组 有 n 个变元,根据给出的条件列 n 个方程组,初始状态和终止状态不同的位置对应的方程右边常数项为1,状态相同的位置对于的方程组右边的常数项为0.然后用高斯消元解一下即可.若有唯一解输出1即可,要是存在 k 个变元,则答案为 1 << k, 因为每个变元都有01两种选择嘛- 代码: #include <iostream> #include <stdio…