首先明确几个概念,精确率,召回率,准确率 精确率precision 召回率recall 准确率accuracy 以一个实际例子入手,假设我们有100个肿瘤病人. 95个良性肿瘤病人,5个恶性肿瘤病人. 我们有一个检测系统,去检测一个肿瘤病人是否为恶性. 那么,对我们的系统来说,有100个样本,5个正样本,95个负样本.假设分布为1,1,1,1,1,0,0,.......(即前5个人为恶性,后95个为良性). 假设我们的系统预测如下1,0,0,1,1,1,0.......,可以看到我们把第二个第三…
1. TP , FP , TN , FN定义 TP(True Positive)是正样本预测为正样本的数量,即与Ground truth区域的IoU>=threshold的预测框 FP(False Positive)是负样本预测为正样本的数量,误报:即与Ground truth区域IoU < threshold的预测框 FN(True Negative)是本为正,错误的认为是负样本的数量,漏报:遗漏的Ground truth区域 TN(False Negative)是本为负,正确的认为是负样本…
常见指标 precision 预测出的所有目标中正确的比例 (true positives / true positives + false positives). recall 被正确定位识别的目标占总的目标数量的比例(true positives/(true positives + true negatives)). 一般情况下模型不够理想,准确率高.召回率低,或者召回率低.准确率高.如果做疾病监测.反垃圾,则是保准确率的条件下,提升召回率.如果是做搜索,那就是保证召回的情况下提升准确率.1…
评价指标是针对同样的数据,输入不同的算法,或者输入相同的算法但参数不同而给出这个算法或者参数好坏的定量指标. 以下为了方便讲解,都以二分类问题为前提进行介绍,其实多分类问题下这些概念都可以得到推广. 准确率 准确率是最好理解的评价指标,它是一个比值: \[ 准确率 = \cfrac{算法分类正确的数据个数}{输入算法的数据的个数} \] 但是使用准确率评价算法有一个问题,就是在数据的类别不均衡,特别是有极偏的数据存在的情况下,准确率这个评价指标是不能客观评价算法的优劣的.例如下面这个例子: 我们…
深度学习目标检测指标mAP https://github.com/rafaelpadilla/Object-Detection-Metrics 参考上面github链接中的readme,有详细描述…
参考资料:https://zhuanlan.zhihu.com/p/46714763 ROC/AUC作为机器学习的评估指标非常重要,也是面试中经常出现的问题(80%都会问到).其实,理解它并不是非常难,但是好多朋友都遇到了一个相同的问题,那就是:每次看书的时候都很明白,但回过头就忘了,经常容易将概念弄混.还有的朋友面试之前背下来了,但是一紧张大脑一片空白全忘了,导致回答的很差. 我在之前的面试过程中也遇到过类似的问题,我的面试经验是:一般笔试题遇到选择题基本都会考这个率,那个率,或者给一个场景让…
众多目标检测的知识中,都提到了mAp一值,那么这个东西到底是什么呢: 我们在评价一个目标检测算法的"好坏"程度的时候,往往采用的是pascal voc 2012的评价标准mAP.目标检测的mAP计算方式在2010年的voc上发生过变化,目前基本都是采用新的mAP评价标准,也就是说mAp的定义发生过改变,有3张图如下,要求算法找出face.蓝色框代表标签label,绿色框代表算法给出的结果pre,旁边的红色小字代表置信度.设定第一张图的检出框叫pre1,第一张的标签框叫label1.第二…
yu Code 15 Comments  机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accuracy),精确率(Precision),召回率(Recall)和F1-Measure.(注: 相对来说,IR 的 ground truth 很多时候是一个 Ordered List, 而不是一个 Bool 类型的 Unordered Collection,在都找到的情况下,排在第三名还是第四名损失…
在搭建一个AI模型或者是机器学习模型的时候怎么去评估模型,比如我们前期讲的利用朴素贝叶斯算法做的垃圾邮件分类算法,我们如何取评估它.我们需要一套完整的评估方法对我们的模型进行正确的评估,如果模型效果比较理想的话则可以放到线上使用,如果不理想的话则需要反复的去调整相关参数进行训练直到达到目的. 而准确率.精确率.召回率和F1值则是选出目标的重要评价指标,我们看下这些指标的定义: 若一个实例为正类,实际预测为正类,即为真正类(True Positv TP) 若一个实例为负类,实际预测为负类,即为真负…
机器学习性能指标精确率.召回率.F1值.ROC.PRC与AUC 精确率.召回率.F1.AUC和ROC曲线都是评价模型好坏的指标,那么它们之间有什么不同,又有什么联系呢.下面让我们分别来看一下这几个指标分别是什么意思. 针对一个二分类问题,将实例分成正类(postive)或者负类(negative).但是实际中分类时,会出现四种情况. (1)若一个实例是正类并且被预测为正类,即为真正类(True Postive TP) (2)若一个实例是正类,但是被预测成为负类,即为假负类(False Negat…