NOIP模拟 13】的更多相关文章

我终于又厚颜无耻地赖着没走 ...... T1 矩阵游戏 用了30hmin找规律,然后发现貌似具有交换律,然后发现貌似有通项公式,然后发现貌似每次操作对通项的影响是相同的,然后发现貌似跟N没啥关系... 确认过复杂度,是遇上了正解. 开心啊,码了1h,到八点半还过不去样例(skyh早做完了好像还过对拍了好像还高兴够呛),我都想弃了 突然过样例,看了看时间,只能放弃了给T1打对拍的习惯... 结束前半小时心态爆炸的时候给它补上了对拍放松心情233 T2 跳房子 考场上只打了NK模拟,虽然想出了循环…
A.矩阵游戏 其实挺水的? 考场上根本没有管出题人的疯狂暗示(诶这出题人有毛病吧这么简单的东西写一大堆柿子),而且推公式能力近乎没有,所以死掉了. 很显然乘法有交换率结合率所以操作顺序对最终结果没什么影响对吧,垃圾如我都能一眼看出来. 统计一下每行总共乘的倍数$h_i$,每列总共乘的倍数$l_i$, 之后考虑$O(n^2)$怎么求出答案:$ans=\sum \limits _{i=1}^{n}h_i \sum \limits _{j=1}^{m}l_j\times((i-1)\times m+j…
T1 工业题 这波行列看反就非常尴尬.....口糊出所有正解想到的唯独行列看反全盘炸列(因为和T1斗智斗勇两个半小时...) 这题就是肯定是个O(n+m)的,那就往哪里想,a,b和前面的系数分开求,前面系数显然是小学学过的走步数方法问题,排列组合搞掉就行,a,b分别是向下走和向右走的步数.然后会打快速幂,会打费马小定理,会组合数学就可以过掉.这里关于系数有两种不同求法. 第一个是打表出的规律,第二个是按照(i,j)(n,m)的位置求得. 1 #include<bits/stdc++.h> 2…
上来看了一遍题,发现T2似乎不可做...暴力只给20分怎么玩? T1感觉是要离线处理,但是看了一会发现不会,遂决定先打暴力.然后去把T2 20分拿了,回去看T1,手摸了一下样例,成功推出式子,5分钟码完,拍上了.还好多瞅了两眼,发现取模取少了,遍地取模,成功AC T3 50分暴力给的非常良心,一下就让我不想打正解了(后来证明这是个无比错误的决定),50分暴力20分钟get,回去看T2. 嗯,这东西一定是有循环节的,加上试试.然后拍上了,发现居然全是AC?吓得我以为我对拍打错了.后来眼查N遍确认无…
因为最近考试频繁,所以咕掉了好长时间... 淦,刚说完又来一场... 先咕了,等以后有时间再写.... 回来了... 首先看到这个题目们,感觉就不存好意... 然后开始开 \(T1\). 只能蒻蒻地按照题目码一个 \(\mathcal O(n^2)\) 递推. 然后就开始疯狂暴力... T1: 正解实际上是把这个方程还原. 然后可以发现这个式子的贡献可以使用组合数来计算. 然后其实就很简单了. #include<bits/stdc++.h> using std::cout; using std…
题解 题如其名,是挺玄学的. 我们发现每个值是 \(-1\) 还是 \(1\) 只与它的次数是奇是偶有关,而 \(\sum_j^{j\le m}d(i×j)\) 又只与其中有多少个奇数有关 对于 \(x\) 其 \(d(x)\) 只有在 \(x\) 是完全平方数时才是奇数(易证),那么我们将每个 \(i\) 表示为 \(p×q^2\) 其中 \(p\) 的因子次数全为 \(1\) 那么能对其造成贡献的 \(j\) 只有当 \(p_j=p_i\),而这种数的个数为 \(\sqrt{\frac{m}…
题解 一道环套树的最小点覆盖题目,所谓环套树就是有在 \(n\) 个点 \(n\) 条边的无向联通图中存在一个环 我们可以发现其去掉一条环上的边后就是一棵树 那么对于此题,我们把所有 \(x\) 方点当点 \(y\) 方点当边,随便找一条环上的边删掉,然后分别从此边的两个端点做树形 \(dp\) 对于一条边上的两个点,我们一定要选一个,但不需要都选,类似例题 所以方程很好推,\(dp_{i,0}\) 表示不选 \(i\) 后覆盖 \(i\) 子树的最小费用,\(dp_{i,0}\) 表示选 \(…
题解 本题不用什么推式子,找规律(而且也找不出来) 可以将整个式子看成一个 \(n×m\) 矩阵 考虑 \(f_{i,j}\),它向右走一步给出 \(f_{i,j}×a\) 的贡献,向下走一步给出 \(f_{i,j}×b\) 的贡献,那么它到 \(f_{n,m}\) 给出 \(f_{i,j}×a^{m-j}+f_{i,j}×b^{n-i}\) 的贡献 但是,它到终点会有不同的走法,这个用组合数解即可,注意对于 \(f_{i,0}\) 它第一步只能向右走,因为向下的数是确定的.其它同理 预处理出阶…
T1:工业题 基本思路   这题有一个重要的小转化: 我们将原来的函数看作一个矩阵,\(f(i,j-1)*a\)相当于从\(j-1\)向右走一步并贡献a,\(f(i-1,j)*b\)相当于从\(i-1\)向下走一步并贡献b   那么问题就转化成了求从第\(0\)行与第\(0\)列的所有点走到点\((m,n)\)的所有方案数的总贡献   在一个点,对于他之前的点的所有走法,他都有可能向下或右走并带来贡献,所以是统计所有方案数.   易知从点\((i,j)\)到点\((m,n)\)的走的步数是\(m…
noip模拟12 solutions 这次考试靠的还是比较好的,但是还是有不好的地方, 为啥嘞??因为我觉得我排列组合好像白学了诶,文化课都忘记了 正难则反!!!!!!!! 害没关系啦,一共拿到了\(120pts\),其实距离我的理想分数还差那么\(100pts\) 具体是这样的,第一题AC,第二题10,第三题10 下次要把知识都回忆一下,比如这次用到的欧拉定理,差一点就忘记了 noip模拟13!!!200分!! · · · T1 简单的区间 哈哈哈这个题是我这几次考试中最成功的一道了,所以我一…