题目链接 题目描述 在一个长宽均为10,入口出口分别为(0,5).(10,5)的房间里,有几堵墙,每堵墙上有两个缺口,求入口到出口的最短路经. 输入输出格式 输入格式: 第一排为n(n<=20),墙的数目. 接下来n排,每排5个实数x,a1,b1,a2,b2. x表示墙的横坐标(所有墙都是竖直的),a1-b1和a2-b2之间为空缺. a1.b1.a2.b2保持递增,x1-xn也是递增的. 输出格式: 输出最短距离,保留2位小数. 输入输出样例 输入样例#1: 2 4 2 7 8 9 7 3 4.…
洛谷题目传送门 了解网络流和dinic算法请点这里(感谢SYCstudio) 题目 题目背景 这本是一个非常简单的问题,然而奶牛们由于下雨已经非常混乱,无法完成这一计算,于是这个任务就交给了你.(奶牛混乱的原因看题目描述) 题目描述 在一个农场里有n块田地.某天下午,有一群牛在田地里吃草,他们分散在农场的诸多田地上,农场由m条无向的路连接,每条路有不同的长度. 突然,天降大雨,奶牛们非常混乱,想要快点去躲雨.已知每个田地都建立有一个牛棚,但是每个牛棚只能容纳一定数量的牛躲雨,如果超过这个数量,那…
LOJ 洛谷 \(f_i=s_{i-1}+h_i^2+\min\{f_j-s_j+h_j^2-2h_i2h_j\}\),显然可以斜率优化. \(f_i-s_{i-1}-h_i^2+2h_ih_j=f_j-s_j+h_j^2\),横坐标不单调可以\(CDQ\)分治或\(Splay\).具体见这里. 然后差不多就是个模板了. 注意算斜率乘1.0啊mmp. //645ms 8.14MB #include <cstdio> #include <cctype> #include <cs…
洛谷题目传送门 一开始肯定要把题目要求的式子给写出来 我们知道方差的公式\(s^2=\frac{\sum\limits_{i=1}^{m}(x_i-\overline x)^2}{m}\) 题目要乘\(m^2\)再输出,于是 \(m^2s^2=m\sum\limits_{i=1}^{m}(x_i-\overline x)^2\) \(=m(\sum\limits_{i=1}^{m}x_i^2-2\overline{x}\sum\limits_{i=1}^{m}x_i+m\overline{x}^…
洛谷题目传送门 安利蒟蒻斜率优化总结 由于人是每次都是连续一段一段地选,所以考虑直接对\(x\)记前缀和,设现在的\(x_i=\)原来的\(\sum\limits_{j=1}^ix_i\). 设\(f_i\)为安排前\(i\)个人的最大值\((f_0=0)\) \(f_i=\max\limits_{j=0}^{i-1}\{f_j+a(x_i-x_j)^2+b(x_i-x_j)+c\}\) \(\quad=\max\limits_{j=0}^{i-1}\{f_j-2ax_ix_j+ax_j^2-b…
洛谷题目传送门 用两种不一样的思路立体地理解斜率优化,你值得拥有. 题意分析 既然所有的土地都要买,那么我们可以考虑到,如果一块土地的宽和高(其实是蒟蒻把长方形立在了平面上)都比另一块要小,那么肯定是直接并购,这一块对答案没有任何贡献. 我们先把这些给去掉,具体做法可以是,按高为第一关键字,宽为第二关键字从大到小排序,然后上双指针扫一遍. 于是,剩下的就是一个高度递减.宽度递增的矩形序列.考虑怎样制定它们的并购方案会最优.显然如果要并购,一定要挑序列中的一段区间,这样贡献答案的就只有最左边矩形的…
题目链接 洛谷P4589 题意可能不清,就是给出一个带权有向图,选出\(n + 1\)条链,问能否全部点覆盖,如果不能,问不能覆盖的点权最小值最大是多少 题解 如果要问全部覆盖,就是经典的可重点的DAG最小路径覆盖,floyd求出传递闭包后跑二分图最大匹配即可 如果不能全部覆盖,就二分答案,看看能否覆盖掉比二分出来的值小的所有点 #include<algorithm> #include<iostream> #include<cstring> #include<cs…
题目: 洛谷3648 注:这道题洛谷3648有SPJ,要求输出方案.BZOJ3675数据组数较多但不要求输出方案. 分析: 这可能是我第三次重学斜率优化了--好菜啊 这道题首先一看就是个DP.稍微推一推类似下面这种式子就会发现事实上结果和切的顺序无关 \[a(b+c)+bc=ab+c(a+b)=ab+ac+bc\] 那么就可以用\(f[i][j]\)表示切了\(j\)次,最右一次在\(i\)后面切的最大值.用\(sum[i]\)表示原序列前\(i\)个数之和,那么就有了这个DP方程(假设在\(i…
传送门 思路: 最朴素的dp式子很好考虑:设\(dp(i,j)\)表示前\(i\)个任务,共\(j\)批的最小代价. 那么转移方程就有: \[ dp(i,j)=min\{dp(k,j-1)+(sumT_i+S*j)*(sumC_i-sumC_k)\} \] 为什么有个\(S*j\)呢,因为前面的批次启动会对后面的答案有影响. 但是分析复杂度是\(O(n^3)\)的,肯定不行. 考虑一下为什么需要第二个状态呢?是为了消除后效性,因为后面的状态不知道总共启动了几次. 但我们可以把费用提前计算,一次启…
本文为原创??? 作者写这篇文章的时候刚刚初一毕业…… 如有错误请各位大佬指正 从例题入手 洛谷P3915[HNOI2008]玩具装箱toy Step0:读题 Q:暴力? 如果您学习过dp 不难推出dp方程 设dp[i]表示放置前i个物品需要的最小价值 dp[i]=min(dp[j]+(sum[i]-sum[j-1]+i-j-L)^2) sum[i]表示前缀和 暴力分有了!!恭喜! 下面我们引入斜率优化: 首先进行一个变形: 原来的式子可以变为:f[i]=min(f[j]+(sum[i]-sum…