如我们有一个分类任务,数据库很小,这时还是需要通过预训练来避免深度模型的过拟合问题的,只不过预训练是通过在一个大的数据库上(比如imagenet),通过有监督的训练来完成的.这种有监督预训练加小的数据库上微调的模式称为Transfer learning. R-CNN是大样本下有监督预训练 + 小样本微调的方式,解决了小样本难以训练甚至过拟合的问题. 速度:经典的目标检测算法使用滑动窗法依次判断所有可能的区域.R-CNN预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上提取特征,进行判断…
BERT:用于语义理解的深度双向预训练转换器(Transformer)   鉴于最近BERT在人工智能领域特别火,但相关中文资料却很少,因此将BERT论文理论部分(1-3节)翻译成中文以方便大家后续研究. ·  摘要   本文主要介绍一个名为BERT的模型.与现有语言模型不同的是,BERT旨在通过调节所有层中的上下文来进行深度双向的预训练.因此,预训练的BERT表示可以通过另外的输出层进行调整,以创建用于广泛任务的状态模型,例如问题转换和语言参考,而无需实质的任务特定体系结构修改.   BERT…
原文链接:http://m.blog.csdn.net/article/details?id=49591213 1. 前言 在学习深度学习的过程中,主要参考了四份资料: 台湾大学的机器学习技法公开课: Andrew NG的深度学习教程: Li feifei的CNN教程: caffe官网的教程: 对比过这几份资料,突然间产生一个困惑:台大和Andrew的教程中用了很大的篇幅介绍了无监督的自编码神经网络,但在Li feifei的教程和caffe的实现中几乎没有涉及.当时一直搞不清这种现象的原因,直到…
http://m.blog.csdn.net/article/details?id=49591213 1. 前言 在学习深度学习的过程中,主要参考了四份资料: 台湾大学的机器学习技法公开课: Andrew NG的深度学习教程: Li feifei的CNN教程: caffe官网的教程: 对比过这几份资料,突然间产生一个困惑:台大和Andrew的教程中用了很大的篇幅介绍了无监督的自编码神经网络,但在Li feifei的教程和caffe的实现中几乎没有涉及.当时一直搞不清这种现象的原因,直到翻阅了深度…
一.学习NLP背景介绍:      从2019年4月份开始跟着华为云ModelArts实战营同学们一起进行了6期关于图像深度学习的学习,初步了解了关于图像标注.图像分类.物体检测,图像都目标物体检测等,基本了解了卷积神经网络(CNN)原理及相关常用模型,如:VGG16.MaxNet等.之后从9月份开始在华为云AI专家的带领指引下,对AI深度学习的另外一个重要领域:自然语言处理(NLP)的学习,到目前为止学习了:命名实体识别.文本分类.文本相似度分析.问答系统.人脸检测.在这一个多月对NLP的处理…
BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文<BERT:语言理解的深度双向变换器预训练>,介绍一种新的语言表征模型BERT——来自变换器的双向编码器表征量.异于最新语言表征模型,BERT基于所有层的左.右语境来预训练深度双向表征量.BERT是首个大批句子层面和词块层面任务中取得当前最优性能的表征模型,性能超越许多使用任务特定架构的系统,刷新11项NLP任务当前最…
预训练语言模型的前世今生 - 从Word Embedding到BERT 本篇文章共 24619 个词,一个字一个字手码的不容易,转载请标明出处:预训练语言模型的前世今生 - 从Word Embedding到BERT - 二十三岁的有德 目录 一.预训练 1.1 图像领域的预训练 1.2 预训练的思想 二.语言模型 2.1 统计语言模型 神经网络语言模型 三.词向量 3.1 独热(Onehot)编码 3.2 Word Embedding 四.Word2Vec 模型 五.自然语言处理的预训练模型 六…
LUSE: 无监督数据预训练短文本编码模型 1 前言 本博文本应写之前立的Flag:基于加密技术编译一个自己的Python解释器,经过半个多月尝试已经成功,但考虑到安全性问题就不公开了,有兴趣的朋友私聊讨论吧. 从本篇博客开始,本人将转化写作模式,由话痨模式转为极简模式,力求三言两语让各位看的明白. 2 工作简介 受到MOCO和SimCSE的启发, 基于自监督,使用海量无监督数据(nlp_chinese_corpus),预训练了一个专门用于短文本表征的编码器.该编码器在分类任务尤其是短文本相似度…
CVPR2020:三维点云无监督表示学习的全局局部双向推理 Global-Local Bidirectional Reasoning for Unsupervised Representation Learning of 3D Point Clouds 论文地址: https://openaccess.thecvf.com/content_CVPR_2020/papers/Rao_Global-Local_Bidirectional_Reasoning_for_Unsupervised_Repr…
词义消歧,句子.篇章语义理解基础,必须解决.语言都有大量多种含义词汇.词义消歧,可通过机器学习方法解决.词义消歧有监督机器学习分类算法,判断词义所属分类.词义消歧无监督机器学习聚类算法,把词义聚成多类,每一类一种含义. 有监督词义消歧方法.基于互信息词义消歧方法,两种语言对照,基于大量中英文对照语料库训练模型可词义消歧.来源信息论,一个随机变量中包含另一个随机变量信息量(英文信息中包含中文信息信息量),假设两个随机变量X.Y的概率分别是p(x), p(y),联合分布概率是p(x,y),互信息计算…