融合异构知识进行常识问答 论文标题 -- <Graph-Based Reasoning over Heterogeneous External Knowledge for Commonsense Question Answering> 论文来源 论文代码 任务介绍 任务概述 以CSQA(常识问答)为例,针对未提及背景知识的问题,要求考虑背景知识并作出回答 任务形式 输入:问题Q=q_1 q_2⋯q_m和包含n个答案的候选答案集合A={a_1,a_2,⋯,a_n} 目标:从候选集合中选出正确答案…
基于多知识库迭代检索的问答系统 论文地址 背景 常识问答任务需要引入外部知识来帮助模型更好地理解自然语言问题,现有的解决方案大都采用两阶段框架: 第一阶段 -- 从广泛的知识来源中找到与给定问题相关的知识事实或者用预训练模型生成相关的知识 第二阶段 -- 将找到的或者生成的知识与问题融合以预测答案. 实验结果证明,外部知识融合到问答系统的做法是十分有效的,但这仍然存在一个关键的问题:就从单一外部知识库找寻相关知识而言,抽取到的部分知识可能对解决问题基本毫无作用,甚至还可能损害模型的性能.例如,以…
作者 | Alex 01 引言 SLAM 基本框架大致分为两大类:基于概率的方法如 EKF, UKF, particle filters 和基于图的方法 .基于图的方法本质上是种优化方法,一个以最小化对环境的观测误差为目标的优化问题.至今仍是主流的框架的核心,karto,cartographer,hector 等都是基于优化的.这种框架 20 年前就已经兴起,比如著名的 Atlas,今天依然是主流. Atlas 初衷是设计一个通用框架,以便在其中实验各种建图算法.目的就是通过建立小块的局部地图,…
Heterogeneous Memory Enhanced Multimodal Attention Model for Video Question Answering 2019-04-25 21:43:11 Paper:https://arxiv.org/pdf/1904.04357.pdf Code: https://github.com/fanchenyou/HME-VideoQA 1. Background and Motivation:  用 Memory Network 做视觉问题…
Learning Conditioned Graph Structures for Interpretable Visual Question Answering 2019-05-29 00:29:43 Paper:http://papers.nips.cc/paper/8054-learning-conditioned-graph-structures-for-interpretable-visual-question-answering.pdf Code:https://github.com…
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer format than this) maintained by @karpathy NEW: This year I also embedded the (1,2-gram) tfidf vectors of all papers with t-sne and placed them in an interf…
From:  http://www.pamitc.org/cvpr15/program.php Official Program for CVPR 2015 Monday, June 8 8:30am-8:40am Ballrooms A,B,C Rooms 302,304,306 Opening Remarks from Conference Chairs The opening remarks will be made from Ballrooms A,B,C, but a live vid…
CVPR2015 Papers震撼来袭! CVPR 2015的文章可以下载了,如果链接无法下载,可以在Google上通过搜索paper名字下载(友情提示:可以使用filetype:pdf命令). Going Deeper With ConvolutionsChristian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke…
本文来自于一次交流的的记录,{}内的为个人体会. 基本概念 实事知识:实体-关系-实体的三元组.比如, 知识图谱:大量实时知识组织在一起,可以构建成知识图谱. 关系抽取:由于文本中蕴含大量事实知识,需要从非结构化文本中自动地抽取出事实知识 完整的关系抽取抽取系统包括以下,其中,关系分类最核心 命名实体识别 (Named Entity Recongnition, NER) 实体链接 (Entity Linking) 关系分类 (Relation Classification) 关系抽取的任务难点…