Storm与SparkStreaming对比】的更多相关文章

Storm与SparkStreaming对比 ◆ Spark Streaming 批处理的性能比Storm高出几十倍.◆ Streaming采用小批量模式,Storm是一条消息一条消息的计算.◆ Storm也随后推出了称为Trident的小批量计算模式,性能基本上持平.…
作为一名程序员通病就是不安分,对业界的技术总要折腾一番,哪怕在最终实际工作中应用到的就那么一点.最近自己准备入门Storm学习,关于流式大数据框架目前比较流行的有Spark和Storm等,在入门之前,先对两种框架做个基本的对比,便于后期学习中更加深入的理解各自的应用场景以及优劣.关于Storm和Spark的对比主要从网络和书本搜索得到,基本比较如下: 对比方面 Storm Spark Streaming 是否实时模型 纯实时 准实时 实时计算延时度 毫秒级 秒级 吞吐量 低 高 事务机制 支持且…
流式计算分为无状态和有状态两种情况.无状态计算观察每个独立的事件,Storm就是无状态的计算框架,每一条消息来了以后和前后都没有关系,一条是一条.比如我们接收电力系统传感器的数据,当电压超过240v就报警,这就是无状态的数据.但是如果我们需要同时判断多个电压,比如三相电路,我们判断三相电都高于某个值,那么就需要将状态保存,计算.因为这三条记录是分别发送过来的. Storm需要自己实现有状态的计算,比如借助于自定义的内存变量或者redis等系统,保证低延迟的情况下自己去判断实现有状态的计算,但是F…
1. Flink.Storm.Sparkstreaming对比 Storm只支持流处理任务,数据是一条一条的源源不断地处理,而MapReduce.spark只支持批处理任务,spark-streaming本质上是一个批处理,采用micro-batch的方式,将数据流切分成细粒度的batch进行处理.Flink同时支持流处理和批处理,一条数据被处理完以后,序列化到缓存后,以固定的缓存块为单位进行网络数据传输,缓存块设为0为流处理,缓存块设为较大值为批处理. storm------ --------…
spark总结 1.Spark的特点: 高可伸缩性 高容错 基于内存计算 支持多种语言:java,scala,python,R 高质量的算法,比MapReduce快100倍 多种调度引擎:可以运行于YARN,Mesos,standalone 等. 2.spark的提供的功能 以及应用场景 spark功能模块 应用场景 RDD 离线数据处理 Spark SQL, DataFrames and Datasets 结构化的关系数据运算 Structured Streaming 结构化流:统一批处理与流…
1.背景 Apache Flink 和 Apache Storm 是当前业界广泛使用的两个分布式实时计算框架.其中 Apache Storm(以下简称"Storm")在美团点评实时计算业务中已有较为成熟的运用(可参考 Storm 的 可靠性保证测试),有管理平台.常用 API 和相应的文档,大量实时作业基于 Storm 构建.而 Apache Flink(以下简称"Flink")在近期倍受关注,具有高吞吐.低延迟.高可靠和精确计算等 特性,对事件窗口有很好的支持,目…
携程大数据平台负责人张翼分享携程的实时大数据平台的迭代,按照时间线介绍采用的技术以及踩过的坑.携程最初基于稳定和成熟度选择了Storm+Kafka,解决了数据共享.资源控制.监控告警.依赖管理等问题之后基本上覆盖了携程所有的技术团队.今年的两个新尝试是Streaming CQL(华为开源)和JStorm(阿里开源),意在提升开发效率.性能和处理消息拥塞能力,目前已有三分之一的Storm应用已经迁到JStorm 2.1上. 今天给大家分享的是携程在实时数据平台的一些实践,按照时间顺序来分享我们是怎…
最近利用闲暇时间,又重新研读了一下Storm.认真对比了一下Hadoop,前者更擅长的是,实时流式数据处理,后者更擅长的是基于HDFS,通过MapReduce方式的离线数据分析计算.对于Hadoop,本身不擅长实时的数据分析处理.两者的共同点都是分布式的架构,而且,都类似有主/从关系的概念.本文中我就不具体阐述Storm集群和Zookeeper集群如何部署的问题,我想通过一个实际的案例切入,分析一下如何利用Storm,完成实时分析处理数据的. Storm本身是Apache托管的开源的分布式实时计…
原文地址 简单易用,Storm让大数据分析变得轻而易举. 如今,公司在日常运作中经常会产生TB(terabytes)级的数据.数据来源包括从网络传感器捕获的,到Web,社交媒体,交易型业务数据,以及其他业务环境中创建的数据.考虑到数据的生成量,实时计算(real-time computation )已成为很多组织面临的一个巨大挑战.我们已经有效地使用了一个可扩展的实时计算系统--开源的 Storm 工具,它是有 Twitter 开发,通常被称为"实时 Hadoop(real-time Hadoo…
最近利用闲暇时间,又重新研读了一下Storm.认真对比了一下Hadoop,前者更擅长的是,实时流式数据处理,后者更擅长的是基于HDFS,通过MapReduce方式的离线数据分析计算.对于Hadoop,本身不擅长实时的数据分析处理.两者的共同点都是分布式的架构,而且,都类似有主/从关系的概念.本文中我就不具体阐述Strom集群和Zookeeper集群如何部署的问题,我想通过一个实际的案例切入,分析一下如何利用Storm,完成实时分析处理数据的. Storm本身是Apache托管的开源的分布式实时计…