机器学习03 /jieba详解】的更多相关文章

机器学习03 /jieba详解 目录 机器学习03 /jieba详解 1.引言 2.分词 2.1.jieba.cut && jieba.cut_for_search 2.2.jieba.lcut && jieba.lcut_for_search 2.3 全模式和精确查找模式 2.4.搜索引擎模式 2.5.HMM模型 3.繁体字分词 4.添加自定义分词 4.1.载入词典 4.2.调整词典 5.关键词提取 5.1.基于TF-IDF算法的关键词提取 5.2.基于 TextRank…
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector machine,简称SVM.通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. (一)理解SVM基本原理 1,SVM的本质--分类 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/34 本文地址:http://www.showmeai.tech/article-detail/195 声明:版权所有,转载请联系平台与作者并注明出处 引言 之前ShowMeAI对强大的boosting模型工具XGBoost做了介绍(详见ShowMeAI文章图解机器学习 | XGBoost模型详解).本篇我们来学习一下GBDT模型(详见ShowMeAI文章 图解机器学习 | GBDT模…
文章转载:http://blog.csdn.net/xiaoxiangzi222/article/details/53483931 jieba “结巴”中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module. Scroll down…
原文地址 ? 传送门 线性回归 线性回归是一种较为简单,但十分重要的机器学习方法.掌握线性的原理及求解方法,是深入了解线性回归的基本要求.除此之外,线性回归也是监督学习回归部分的基石. 线性回归介绍 在了解线性回归之前,我们得先了解分类和回归问题的区别. 首先,回归问题和分类问题一样,训练数据都包含标签,这也是监督学习的特点.而不同之处在于,分类问题预测的是类别,回归问题预测的是连续值. 例如,回归问题往往解决: 股票价格预测 房价预测 洪水水位线 上面列举的问题,我们需要预测的目标都不是类别,…
最邻近规则分类(K-Nearest Neighbor)KNN算法 1.综述 1.1 Cover和Hart在1968年提出了最初的邻近算法 1.2 分类(classification)算法 1.3 输入基于实例的学习(instance-based learning),懒惰学习(lazy learing) 2. 例子 未知电影属于什么类型? 3.算法详述 3.1 步骤 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K 计算未知实例与所有已知实例的距离 选择最近K个已知实例 根据少数服…
插入文档 db.test.insert({"name":"jinks"}); 批量插入 db.test.insert([{}, {}, {}]); 一次批量插入过程中失败时,之前插入的信息插入保存,之后的信息不会再继续插入; 限制 每次插入都有一个最大限制(与驱动版本有关),超过限制驱动程序会将这次请求拆分; 批量插入不能在单次请求中将 多个文档批量插入到多个集合中:要是只导入原始数据(例如,从数据feed或者MySQL中导入),可以使用命令行工具,如mongoim…
用Objective-C等面向对象语言编程时,“对象”(object)就是“基本构造单元”(building block),开发者可以通过对象来存储并传递数据.在对象之间传递数据并执行任务的过程就叫做“消息传递”(Messaging). “属性”(property)是Objecive-C的一项特性,用于封装对象中的数据. 当应用程序运行起来以后,为其提供相关支持的代码叫做“Objective-C运行期环境”(Objective-C runtime),它提供了一些使得对象之间能够传递消息的重要函数…
1.制表符 \t str.expandtabs(20) 可相当于表格 2.def   isalpha(self) 判断是否值包含字母(汉字也为真),不包含数字 3.def   isdecimal(self)   判断是否为纯数字 def   isdigit(self)  判断是否为数字 ②也算数字,范围更广 def  isnumeric()   判断是否为数字  二也算,范围最广 4.def isidentifier(self)            判断是不是标识符,不查关键字 5.def i…
WebApi系列文章 [01]浅谈HTTP在WebApi开发中的运用 [02]聊聊WebApi体系结构 [03]详解WebApi参数的传递 [04]详解WebApi测试和PostMan [05]浅谈WebApi Cores [06]详解WebApi 异常处理 [07]用WebAPI写个基于EF的CURD [08]浅谈WebAPI身份认证 [09]详解系列化和模型绑定 [10]浅谈WebApi如何配合Mvc有效工作 [11]浅谈API Reference [12]浅谈接口在软件架构中的作用 [13…
[机器学习详解]SMO算法剖析 转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51227754 CSDN−勿在浮沙筑高台 本文力求简化SMO的算法思想,毕竟自己理解有限,无奈还是要拿一堆公式推来推去,但是静下心看完本篇并随手推导,你会迎刃而解的.推荐参看SMO原文中的伪代码. 1.SMO概念 上一篇博客已经详细介绍了SVM原理,为了方便求解,把原始最优化问题转化成了其对偶问题,因为对偶问题是一个凸二次规划问题,这样的凸二次规…
iOS回顾笔记(03) -- 自定义View的封装和xib文件的使用详解 iOS开发中,我们常常将一块View封装起来,以便于统一管理内部的子控件.如iOS回顾笔记(02)中的"书"这一自定义View. 下面就来说说自定义View的封装以及它的多种实现方式 自定义UIView(控件)的封装 什么是View的封装 如果一个View的内部子控件比较多,一般会考虑自定义一个View,把它内部子控件的创建屏蔽起来,不让外部关心. 外界传入对应的数据模型给view.view拿到数据模型之后给内部…
[机器学习基本理论]详解最大似然估计(MLE).最大后验概率估计(MAP),以及贝叶斯公式的理解 https://mp.csdn.net/postedit/81664644 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们. 下文将详细说明MLE和MAP的思路与区别.先讲解MLE的相应知识.…
[机器学习基本理论]详解最大后验概率估计(MAP)的理解 https://blog.csdn.net/weixin_42137700/article/details/81628065 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们. 下文将详细说明MLE和MAP的思路与区别.上篇讲解了ML…
原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自动机器学习.机器学习与最优化算法,选取23篇会议上入选的重点论文进行分析解读,与大家分享.Enjoy! NeurIPS (Conference on Neural Information Processing Systems,神经信息处理系统进展大会)与ICML并称为神经计算和机器学习领域两大顶级学…
在上篇文章学机器学习,不会数据处理怎么行?—— 一.NumPy详解中,介绍了NumPy的一些基本内容,以及使用方法,在这篇文章中,将接着介绍另一模块——Pandas.(本文所用代码在这里) Pandas数据结构介绍 大家应该都听过表结构,但是,如果让你自己来实现这么一个结构,并且能对其进行数据处理,能实现吗?我相信,大部分人都能做出来,但是不一定能做的很好.而Python中的一个模块pandas给我们提供了一个很好的数据结构,它包括了序列Series和数据框DataFrame.pandas是基于…
(转https://blog.csdn.net/gzmfxy/article/details/78994396) 中文分词是中文文本处理的一个基础步骤,也是中文人机自然语言交互的基础模块,在进行中文自然语言处理时,通常需要先进行分词.本文详细介绍现在非常流行的且开源的分词器结巴jieba分词器,并使用python实战介绍. jieba分词算法使用了基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能生成词情况所构成的有向无环图(DAG), 再采用了动态规划查找最大概率路径,找出基于词频的最大切…
一 前言 Word2Vec是同上一篇提及的PageRank一样,都是Google的工程师和机器学习专家所提出的的:在学习这些算法.模型的时候,最好优先去看Google提出者的原汁Paper和Project,那样带来的启发将更大.因为创造者对自己所创之物的了解程度优于这世上的绝大部分者,这句话,针对的是爱看博文的读者,like me. 另外,补充几句. 1.防止又被抄袭,故关键笔记以图贴之. 2.标题前带阿拉伯数字标号的内容,便是使用Gensim的Word2Vec模型过程中的完整流程序号,通常也较…
机器学习中的隐马尔科夫模型(HMM)详解 在之前介绍贝叶斯网络的博文中,我们已经讨论过概率图模型(PGM)的概念了.Russell等在文献[1]中指出:"在统计学中,图模型这个术语指包含贝叶斯网络在内的比较宽泛的一类数据结构." 维基百科中更准确地给出了PGM的定义:"A graphical model or probabilistic graphical model is a probabilistic model for which a graph expresses t…
1.CRF的预测算法条件随机场的预测算法是给定条件随机场P(Y|X)和输入序列(观测序列)x,求条件概率最大的输出序列(标记序列)y*,即对观测序列进行标注.条件随机场的预测算法是著名的维特比算法(Vitebi Algorthim). 维特比算法在隐马尔科夫模型的预测算法中已经详细介绍和Python实现过,详见以前的博客: [机器学习][隐马尔可夫模型-4]维特比算法:算法详解+示例讲解+Python实现 2.CRF的预测算法之维特比算法2.1维特比算法简介维特比算法实际使用动态规划解CRF条件…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第31篇文章,我们一起继续来聊聊GBDT模型. 在上一篇文章当中,我们学习了GBDT这个模型在回归问题当中的原理.GBDT最大的特点就是对于损失函数的降低不是通过调整模型当中已有的参数实现的,若是通过训练新的CART决策树来逼近的.也就是说是通过增加参数而不是调整参数来逼近损失函数最低点. 如果对于这部分不是很理解的话,可以通过下方的链接回顾一下之前的内容: 机器学习 | 详解GBDT梯度提升树原理,看完再也不怕面试…
今天是机器学习专题的第34篇文章,我们继续来聊聊SVM模型. 我们在上一篇文章当中推导了SVM模型在硬间隔的原理以及公式,最后我们消去了所有的变量,只剩下了\(\alpha\).在硬间隔模型当中,样本是线性可分的,也就是说-1和1的类别可以找到一个平面将它完美分开.但是在实际当中,这样的情况几乎是不存在的.道理也很简单,完美是不存在的,总有些样本会出错. 那针对这样的问题我们应该怎么解决呢? 软间隔 在上文当中我们说了,在实际的场景当中,数据不可能是百分百线性可分的,即使真的能硬生生地找到这样的…
Ext.Net通过DirectEvents进行服务器端异步的事件处理.[Ext.Net学习笔记]02:Ext.Net用法概览.Ext.Net MessageBus用法.Ext.Net布局 中已经简单的介绍了DirectEvents,今天将详细的介绍一下DirectEvents. DirectEvents异步执行服务器端事件 我们首先来看一下Ext.Net DirectEvents的一个最简单用法,通过点击按钮触发服务器端的事件处理方法,并在前台弹出一个提示框. <ext:Window runat…
0.聚类 聚类就是对大量的未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小,聚类属于无监督的学习方法. 1.内在相似性的度量 聚类是根据数据的内在的相似性进行的,那么我们应该怎么定义数据的内在的相似性呢?比较常见的方法是根据数据的相似度或者距离来定义的,比较常见的有: 闵可夫斯基距离/欧式距离 上述距离公式中,当p=2时,就是欧式距离,当p=1时,就是绝对值的和,当p=正无穷时,这个距离变成了维度差最大的那个值. 杰卡德相似系数 一般是…
1.随机森林模型 clf = RandomForestClassifier(n_estimators=200, criterion='entropy', max_depth=4) rf_clf = clf.fit(x, y.ravel()) RandomForestClassifier函数的参数含义详解: max_features:随机森林允许单个决策树使用特征的最大数量. Python为最大特征数提供了多个可选项. 下面是其中的几个: Auto/None :简单地选取所有特征,每颗树都可以利用…
本文源码:GitHub·点这里 || GitEE·点这里 一.Http协议简介 1.概念说明 HTTP超文本传输协议,是用于从万维网服务器传输超文本到本地浏览器的传送协议,基于TCP/IP通信协议来传递数据:HTML文件.图片.查询数据等.HTTP协议基于客户端-服务端架构模式.浏览器作为HTTP客户端通过URL向服务端即WEB服务器发送请求.Web服务器根据接收到的请求后,处理完请求后向客户端发送响应信息. 2.协议特点 简单快速 请求服务器时,只需传送请求方法和路径.请求类型常用GET.PO…
答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是 &lt;img src="https://pic3.zhimg.com/50/v2-39eca1f…
目录 基于模型的特征选择详解 (Embedded & Wrapper) 1. 线性模型和正则化(Embedded方式) 2. 基于树模型的特征选择(Embedded方式) 3. 顶层特征选择算法(Wrapper方式) 4. 一个完整的例子 5. 总结 6. Tips 7. References 基于模型的特征选择详解 (Embedded & Wrapper) 单变量特征选择方法独立的衡量每个特征与响应变量之间的关系,另一种主流的特征选择方法是基于机器学习模型的方法.有些机器学习方法本身就具…
不多说,直接上干货! 前言 写在前面的话,网上能够找到一些关于ossec方面的资料,虽然很少,但是总比没有强,不过在实际的使用过程中还是会碰到许多稀奇古怪的问题.整理整理我的使用过程,就当做一篇笔记吧. PS:本文填了很多坑. OSSEC是一款开源的基于主机的入侵检测系统,可以简称为HIDS.它具备日志分析,文件完整性检查,策略监控,rootkit检测,实时报警以及联动响应等功能.它支持多种操作系统:Linux.Windows.MacOS.Solaris.HP-UX.AIX.属于企业安全之利器.…
不多说,直接上干货! 前期博客 Windows下的Python 3.6.1的下载与安装(适合32bits和64bits)(图文详解) 这是我自定义的Python 的安装目录 (D:\SoftWare\Python\Python36\Scripts) 1.Jupyter Notebook 和 pip 为了更加方便地写 Python 代码,还需要安装 Jupyter notebook. 利用 pip 安装 Jupyter notebook. 为什么要使用 Jupyter?参考: https://ww…