论文信息 论文标题:Bilinear Graph Neural Network with Neighbor Interactions论文作者:Hongmin Zhu, Fuli Feng, Xiangnan He, Xiang Wang, Yan Li, Kai Zheng, Yongdong Zhang论文来源:2019, NeurIPS论文地址:download 论文代码:download 1 Introduction GNNs 中的图卷积操作可以认为是对目标节点的邻居特征线性聚合(加权和)…
Paper Information Title:Cauchy Graph EmbeddingAuthors:Dijun Luo, C. Ding, F. Nie, Heng HuangSources:2011, ICMLOthers:71 Citations, 30 References Abstract 拉普拉斯嵌入( Laplacian embedding)为图的节点提供了一种低维表示,其中边权值表示节点对象之间的成对相似性.通常假设拉普拉斯嵌入结果保留了低维投影子空间上原始数据的局部拓扑结…
论文信息 论文标题:Iterative Graph Self-Distillation论文作者:Hanlin Zhang, Shuai Lin, Weiyang Liu, Pan Zhou, Jian Tang, Xiaodan Liang, Eric P. Xing论文来源:2021, ICLR论文地址:download 论文代码:download 1 Introduction 创新点:图级对比. 2 Method 整体框架如下: 2.1 Iterative Graph Self-Distil…
论文信息 论文标题:GraphMAE: Self-Supervised Masked Graph Autoencoders论文作者:Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, Jie Tang论文来源:2022, KDD论文地址:download 论文代码:download 1 Introduction GAE 研究困难之处: 首先,过度强调结构信息. 大多数 GAEs 利用重建边连接作为目标…
论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, Muhan Zhang论文来源:2022,arXiv论文地址:download 论文代码:download 1 Introduction 本文工作: 1)正式区分了 K-hop 邻居的两个不同的内核,它们在以前的工作中经常被滥用.一种是基于图扩散(…
论文信息 论文标题:Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data论文作者:Qi Zhu, Natalia Ponomareva, Jiawei Han, Bryan Perozzi论文来源:2021, NeurIPS论文地址:download 论文代码:download 1 Introduction 半监督学习通过使用数据之间的关系(即边连接关系,会产生归纳偏差),以及一组带标签的样本…
论文信息 论文标题:Learning Graph Augmentations to Learn Graph Representations论文作者:Kaveh Hassani, Amir Hosein Khasahmadi论文来源:2022, arXiv论文地址:download论文代码:download 1 Introduction 我们引入了 LG2AR,学习图增强来学习图表示,这是一个端到端自动图增强框架,帮助编码器学习节点和图级别上的泛化表示.LG2AR由一个学习增强参数上的分布的概率策…
论文信息 论文标题:Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering论文作者:Chakib Fettal, Lazhar Labiod,Mohamed Nadif论文来源:2021, WSDM论文地址:download论文代码:download 1 Introduction 一个统一的框架中解决了节点嵌入和聚类问题. 2 Method 整体框架: 2.1 Joint Graph Rep…
论文信息 论文标题:Attributed Graph Clustering via Adaptive Graph Convolution论文作者:Xiaotong Zhang, Han Liu, Qimai Li, Xiao-Ming Wu论文来源:2019, IJCAI论文地址:download 论文代码:download 1 Introduction 关于GNN 是低通滤波器的好文. 2 Method 2.1 Graph Convolution 2.1.1 Basic idea 为正式定义图…
论文标题:DEEP GRAPH INFOMAX 论文方向:图像领域 论文来源:2019 ICLR 论文链接:https://arxiv.org/abs/1809.10341 论文代码:https://github.com/PetarV-/DGI 摘要 DGI,一种以无监督的方式学习图结构数据中节点表示的一般方法.DGI 依赖于最大限度地扩大图增强表示和目前提取到的图信息之间的互信息--两者都是使用已建立的图卷积网络体系结构导出的.对于图增强表示,是根据目标节点所生成的子图,因此可以用于下游节点的…
Paper Information 论文标题:Deep Graph Contrastive Representation Learning论文作者:Yanqiao Zhu, Yichen Xu, Feng Yu, Q. Liu, Shu Wu, Liang Wang论文来源:2020, ArXiv论文地址:download 代码地址:download Abstract 在本文中,作者提出了一个利用节点级对比目标的无监督图表示学习框架.具体来说,通过破坏原始图去生成两个视图,并通过最大化这两个视图…
论文信息 论文标题:Self-supervised Graph Neural Networks without explicit negative sampling论文作者:Zekarias T. Kefato, Sarunas Girdzijauskas论文来源:2021, WWW论文地址:download 论文代码:download 1 介绍 本文核心贡献: 使用孪生网络隐式实现对比学习: 本文提出四种特征增强方式(FA): 2 相关工作 Graph Neural Networks GCN…
论文信息 论文标题:Deep Graph Clustering via Dual Correlation Reduction论文作者:Yue Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu, Linxuan Song, Xihong Yang, En Zhu论文来源:2022, AAAI论文地址:download 论文代码:download 1 介绍 表示崩塌问题:倾向于将所有数据映射到相同表示.     2 方法 2.1 整体框架     该框架包括两个模块…
论文信息 论文标题:Self-Attention Graph Pooling论文作者:Junhyun Lee, Inyeop Lee, Jaewoo Kang论文来源:2019, ICML论文地址:download 论文代码:download 1 Introduction 图池化三种类型: Topology based pooling: Hierarchical pooling:(使用所有从 GNN 获得的节点表示) Hierarchical pooling: 关于 Hierarchical p…
论文信息 论文标题:Deep Graph Clustering via Mutual Information Maximization and Mixture Model论文作者:Maedeh Ahmadi, Mehran Safayani, Abdolreza Mirzaei论文来源:2022, arXiv 论文地址:download论文代码:download 1 Introduction 结合高斯混合模型+对比学习. 2 Method 总体框架   2.1 Node Embedding En…
论文信息 论文标题:Adaptive Graph Encoder for Attributed Graph Embedding论文作者:Gayan K. Kulatilleke, Marius Portmann, Shekhar S. Chandra论文来源:2020, KDD论文地址:download论文代码:download 1 Introduction 基于 GCN 的方法有三个主要缺点: 图卷积滤波器和权值矩阵的纠缠会损害其性能和鲁棒性: 图卷积滤波器是广义拉普拉斯平滑滤波器的特殊情况,…
论文信息 论文标题:GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training论文作者:Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang论文来源:2020, KDD论文地址:download论文代码:download 1 Introduction 本文的预训练任务:子图实例判…
论文信息 论文标题:Learning Graph Embedding with Adversarial Training Methods论文作者:Shirui Pan, Ruiqi Hu, Sai-fu Fung, Guodong Long, Jing Jiang, Chengqi Zhang论文来源:2020, ICLR论文地址:download 论文代码:download 1 Introduction 众多图嵌入方法关注于保存图结构或最小化重构损失,忽略了隐表示的嵌入分布形式,因此本文提出对…
论文信息 论文标题:Federated Graph Attention Network for Rumor Detection论文作者:Huidong Wang, Chuanzheng Bai, Jinli Yao论文来源:2022, arXiv论文地址:download 论文代码:download 1 Introduction 现有的谣言检测模型都是为单一的社交平台构建的,这忽略了跨平台谣言的价值.本文将联邦学习范式与双向图注意网络谣言检测模型相结合,提出了用于谣言检测的联邦图注意网络(Fed…
Paper Information Titlel:<Semi-Supervised Classification with Graph Convolutional Networks>Authors:Thomas Kipf, M. WellingSource:2016, ICLRPaper:Download Code:Download 致敬  Thomas Kipf 我原以为将  GCN 发扬光大的人应该是一位老先生,毕竟能将一个理论影响全世界的人必应该有很多的知识储备(主观直觉),然后我发现自…
Gaussian field consensus论文解读及MATLAB实现 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.Introduction 论文:Wang G , Chen Y , Zheng X . Gaussian field consensus: A robust nonparametric matching method for outlier rejection[J]. Pattern Recognition, 2018,…
[抓取]6-DOF GraspNet 论文解读 [注]:本文地址:[抓取]6-DOF GraspNet 论文解读 若转载请于明显处标明出处. 前言 这篇关于生成抓取姿态的论文出自英伟达.我在读完该篇论文后我简单地对其进行一些概述,如有错误纰漏请指正! 论文概要 生成抓握姿势是机器人物体操纵任务的关键组成部分. 在本工作中,作者提出了抓取生成问题,即使用变分自动编码器对一组抓取进行采样,并利用抓取评估器模型对采样抓取进行评估和微调细化. 抓取采样器和抓取refine网络都以深度相机观察到的三维点云…
摘要:本文提出一种基于局部特征保留的图卷积网络架构,与最新的对比算法相比,该方法在多个数据集上的图分类性能得到大幅度提升,泛化性能也得到了改善. 本文分享自华为云社区<论文解读:基于局部特征保留的图卷积神经网络架构(LPD-GCN)>,原文作者:PG13 . 近些年,很多研究者开发了许多基于图卷积网络的方法用于图级表示学习和分类应用.但是,当前的图卷积网络方法无法有效地保留图的局部信息,这对于图分类任务尤其严重,因为图分类目标是根据其学习的图级表示来区分不同的图结构.为了解决该问题,这篇文章提…
CVPR2020论文解读:手绘草图卷积网络语义分割 Sketch GCN: Semantic Sketch Segmentation with Graph Convolutional Networks 论文链接:https://arxiv.org/pdf/2003.00678.pdf 摘要 介绍了一种用于手绘草图语义分割和标注的图形卷积神经网络SketchGCN.我们将输入草图视为二维点集,并将笔划结构信息编码为图形节点/边缘表示.为了预测每个点的标签,我们的SketchGCN使用图卷积和全局分…
自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等等.CVPR19和ICCV19上,Google Brain的几个研究员发表了两篇论文,从另外的视角分析和研究self-supervised learning问题.两篇paper名字分别是:Revisiting Self-Supervised Visual Representation Learnin…
自监督学习(Self-Supervised Learning)多篇论文解读(上) 前言 Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题.所以近期大家的研究关注点逐渐转向了Unsupervised learning,许多顶会包括ICML, NeurIPS, CVPR, ICCV相继出现一些不错的paper和研究工作. 这里主要关注Unsupervised learning一类特定的方法:Self-supervised learning(自…
论文题目:<Structural Deep Network Embedding>发表时间:  KDD 2016 论文作者:  Aditya Grover;Aditya Grover; Jure Leskovec论文地址:  DownloadGithub:      Go1.Go2 ABSTRACT Motivation 由于底层网络结构复杂,Shallow model 无法捕捉高度非线性的网络结构,导致网络表示次优. 因此,如何找到一种能够有效捕捉高度非线性网络结构并保留全局和局部结构的方法是…
论文信息 论文标题:Towards Explanation for Unsupervised Graph-Level Representation Learning论文作者:Qinghua Zheng, Jihong Wang, Minnan Luo, Yaoliang Yu, Jundong Li, Lina Yao, Xiaojun Chang论文来源:2022, arXiv论文地址:download论文代码:download 1 Introduction 使用信息瓶颈的图级表示可解释性.…
论文信息 论文标题:Rethinking the Setting of Semi-supervised Learning on Graphs论文作者:Ziang Li, Ming Ding, Weikai Li, Zihan Wang, Ziyu Zeng, Yukuo Cen, Jie Tang论文来源:2022, arXiv论文地址:download 论文代码:download 1 Introduction 本文主要研究半监督GNNs 模型存在的超调现象(over-tuning phenom…
itemKNN发展史----推荐系统的三篇重要的论文解读 本文用到的符号标识 1.Item-based CF 基本过程: 计算相似度矩阵 Cosine相似度 皮尔逊相似系数 参数聚合进行推荐 根据用户项目交互矩阵 \(A\) 计算相似度矩阵 \(W\): 这样,用户对整个项目列表的偏好值可以如下计算: \[{ {\tilde a_i}^T}={ a_i^T} \times W\] 例如,对于 j 号物品,用户的偏好值如此计算: \[{ {\tilde a_{(u,j)}}}=\sum_{i\in…