TensorFlow中的Variable 变量】的更多相关文章

1.简介 对比分析tf.Variable / tf.get_variable | tf.name_scope / tf.variable_scope的异同 2.说明 tf.Variable创建变量:tf.get_variable创建与获取变量 tf.Variable自动检测命名冲突并且处理:tf.get_variable在没有设置reuse时会报错 tf.name_scope没有reuse功能,tf.get_variable在变量冲突时报错:tf.variable_scope有reuse功能,可…
常量 constant tf.constant()函数定义: def constant(value, dtype=None, shape=None, name="Const", verify_shape=False) value: 符合tf中定义的数据类型的常数值或者常数列表; dtype:数据类型,可选; shape:常量的形状,可选; name:常量的名字,可选; verify_shape:常量的形状是否可以被更改,默认不可更改; constant()函数提供在tensorflow…
翻译自:https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-scope-in-tensorflow 问题:下面这几个函数的区别是什么? tf.variable_op_scope(values, name, default_name, initializer=None) Returns a context manager for defining an op t…
1.TensorFlow中的变量和常量介绍 TensorFlow中的变量: import tensorflow as tf state = tf.Variable(0,name='counter') 以上代码定义了一个state变量, new_value = tf.add(state,1) 以上代码创建一个操作,使定义的变量加一,并将加一后的值赋给 new_value update = tf.assign(state,new_value) 赋值操作,将new_value 的值赋给state in…
What: 在Tensorflow中, 为了区别不同的变量(例如TensorBoard显示中), 会需要命名空间对不同的变量进行命名. 其中常用的两个函数为: tf.variable_scope, tf.name_scope. Why: 在自己的编写代码过程中, 用如下代码进行变量生成并进行卷积操作: import tensorflow as tf import numpy as np def my_conv2d(data, name, kh, kw, sh, sw, n_out): n_in…
2.Tensorflow中的变量注意:tf中使用 变量必须先初始化下面是一个使用变量的TF代码(含注释): # __author__ = "WSX" import tensorflow as tf # tf中使用 变量必须先初始化 x = tf.Variable([1,2]) a = tf.constant([3,3]) sub = tf.subtract(x,a) add = tf.add(x,sub) init = tf.global_variables_initializer()…
1.tensor 在tensorflow中,数据是被封装在tensor对象中的.tensor是张量的意思,即包含从0到任意维度的张量.常数是0维度的张量,向量是1维度的张量,矩阵是二维度的张量,以及还有多维度的张量. # tensor1 是一个0维的 int32 tensor tensor1 = tf.constant(1234) # tensor2 是一个1维的 int32 tensor tensor2 = tf.constant([123,456,789]) # tensor3 是一个二维的…
''' Created on Apr 21, 2017 @author: P0079482 ''' #如何通过tf.variable_scope函数来控制tf.ger_variable函数获取已经创建过的变量 #在名字为foo的命名空间内创建名字为v的变量 import tensorflow as tf with tf.variable_scope("foo"): v = tf.get_variable("v",shape=[1],initializer=tf.co…
代码(操纵全局变量) xiaojie=1 i=tf.constant(0,dtype=tf.int32) batch_len=tf.constant(10,dtype=tf.int32) loop_cond = lambda a,b: tf.less(a,batch_len) #yy=tf.Print(batch_len,[batch_len],"batch_len:") yy=tf.constant(0) loop_vars=[i,yy] def _recurrence(i,yy):…
在训练深度网络时,为了减少需要训练参数的个数(比如LSTM模型),或者是多机多卡并行化训练大数据.大模型等情况时,往往就需要共享变量.另外一方面是当一个深度学习模型变得非常复杂的时候,往往存在大量的变量和操作,如何避免这些变量名和操作名的唯一不重复,同时维护一个条理清晰的graph非常重要.因此,tensorflow中用tf.Variable(), tf.get_variable, tf.Variable_scope(), tf.name_scope() 几个函数来实现: tf.Variable…