论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 本文提出的模型叫MobileNet,主要用于移动和嵌入式视觉应用.该模型具有小巧.低延迟的特点.MobileNet在广泛的应用场景中具有有效性,包括物体检测,细粒度分类,人脸属性和大规模地理定位. MobileNet架构 深度可分解卷积(Depthwise Separable Convolution) MobileNet模…
论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNet由Google提出的一种新的卷积计算方法,旨在加速卷积计算过程. 为了减小网络模型大小,提出了两种比较暴力的裁剪方法. (1) 直接对channel进行裁剪,这种随机砍掉一些channel,也太暴力了吧,砍多了效果肯定不好,想想都知道. (2) 减少输入图像的分辨率,也就是减小输入的尺寸大小. 我们还是关…
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文链接:https://arxiv.org/pdf/1704.04861.pdf 摘要和Prior Work就略了,懒:)   Summary: 总的来说,MobileNet相对于标准卷积过程有以下几点不同: 1) 将标准的卷积操作分为两步:depthwise convolution和pointwise convolution.即…
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications Intro MobileNet 我已经使用过tensorflow的api在实际场景中取得了很实时的识别效果,其论文的贡献是利用depth-wise卷积和point-wise卷积对一般的卷积核进行优化,使得网络模型的卷积计算量大大减小.这一贡献使得Mobile-Net能够在移动设备上顺利运行,并且取得不错的速度和精度. Depthwi…
论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低层视觉问题,提出了一般性的用于解决低层视觉问题的对偶卷积神经网络.作者认为,低层视觉问题,如常见的有超分辨率重建.保边滤波.图像去雾和图像去雨等,这些问题经常涉及到估计目标信号的两个成分:结构和细节.因此,文章提出DualCNN,它包含两个平行的分支来分别恢复结构和细节信息. 具体内容参见https…
论文标题:MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications 论文作者:Andrew G.Howard  Menglong Zhu  Bo Chen ..... 论文地址:https://arxiv.org/pdf/1704.04861.pdf (https://arxiv.org/abs/1704.04861) 代码地址: TensorFlow官方 github-Tensorflo…
2017-CVPR-MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications Andrew Howard.Hartwig Adam(Google) GitHub: 1.4k stars Citation:4203 Introduction 本文介绍了一种新的网络结构,MobileNet(V1),网络结构上与VGG类似,都属于流线型架构,但使用了新的卷积层--深度可分离卷积(depthwise…
论文标题:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文作者:Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 论文地址:https://arxiv.org/abs/1704.04861…
About this Course This course will teach you how to build convolutional neural networks and apply it to image data. Thanks to deep learning, computer vision is working far better than just two years ago, and this is enabling numerous exciting applica…
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻译 综述深度卷积神经网络架构:从基本组件到结构创新 目录 摘要    1.引言    2.CNN基本组件        2.1 卷积层        2.2 池化层        2.3 激活函数        2.4 批次归一化        2.5 Dropout        2.6 全连接层…