论文信息 论文标题:Deep Attention-guided Graph Clustering with Dual Self-supervision论文作者:Zhihao Peng, Hui Liu, Yuheng Jia, Junhui Hou论文来源:2022, arXiv论文地址:download论文代码:download 1 Introduction 当前考虑拓扑结构信息和语义信息的深度聚类方法存在的问题: 将 DAE 和 GCN 提取到的特征重要性同等看待: 忽略了不同层次的多尺度信…
论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning> Authors:Jiwoong Park.Minsik Lee.H. Chang.Kyuewang Lee.J. Choi Sources:2019 IEEE/CVF International Conference on Computer Vision (ICCV) Paper:Downlo…
论文信息 论文标题:Self-Attention Graph Pooling论文作者:Junhyun Lee, Inyeop Lee, Jaewoo Kang论文来源:2019, ICML论文地址:download 论文代码:download 1 Introduction 图池化三种类型: Topology based pooling: Hierarchical pooling:(使用所有从 GNN 获得的节点表示) Hierarchical pooling: 关于 Hierarchical p…
论文信息 论文标题:Understanding Attention and Generalization in Graph Neural Networks论文作者:Boris Knyazev, Graham W. Taylor, Mohamed R. Amer论文来源:2019,NeurIPS论文地址:download 论文代码:download 1 Introduction 本文关注将注意力 GNNs 推广到更大.更复杂或有噪声的图.作者发现在某些情况下,注意力机制的影响可以忽略不计,甚至有害…
论文信息 论文标题:GraphMAE: Self-Supervised Masked Graph Autoencoders论文作者:Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, Jie Tang论文来源:2022, KDD论文地址:download 论文代码:download 1 Introduction GAE 研究困难之处: 首先,过度强调结构信息. 大多数 GAEs 利用重建边连接作为目标…
论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, Muhan Zhang论文来源:2022,arXiv论文地址:download 论文代码:download 1 Introduction 本文工作: 1)正式区分了 K-hop 邻居的两个不同的内核,它们在以前的工作中经常被滥用.一种是基于图扩散(…
论文信息 论文标题:Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data论文作者:Qi Zhu, Natalia Ponomareva, Jiawei Han, Bryan Perozzi论文来源:2021, NeurIPS论文地址:download 论文代码:download 1 Introduction 半监督学习通过使用数据之间的关系(即边连接关系,会产生归纳偏差),以及一组带标签的样本…
论文信息 论文标题:Learning Graph Augmentations to Learn Graph Representations论文作者:Kaveh Hassani, Amir Hosein Khasahmadi论文来源:2022, arXiv论文地址:download论文代码:download 1 Introduction 我们引入了 LG2AR,学习图增强来学习图表示,这是一个端到端自动图增强框架,帮助编码器学习节点和图级别上的泛化表示.LG2AR由一个学习增强参数上的分布的概率策…
论文信息 论文标题:Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering论文作者:Chakib Fettal, Lazhar Labiod,Mohamed Nadif论文来源:2021, WSDM论文地址:download论文代码:download 1 Introduction 一个统一的框架中解决了节点嵌入和聚类问题. 2 Method 整体框架: 2.1 Joint Graph Rep…
论文信息 论文标题:Attributed Graph Clustering via Adaptive Graph Convolution论文作者:Xiaotong Zhang, Han Liu, Qimai Li, Xiao-Ming Wu论文来源:2019, IJCAI论文地址:download 论文代码:download 1 Introduction 关于GNN 是低通滤波器的好文. 2 Method 2.1 Graph Convolution 2.1.1 Basic idea 为正式定义图…
论文信息 论文标题:Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks论文作者:Mingqi Yang, Yanming Shen, Heng Qi, Baocai Yin论文来源:2021, WWW论文地址:download 论文代码:download 1 Abstract GNN 应该能够有效地提取与任务相关的结构,并且对无关的部分保持不变. 本文提出的解决方法:从原始图的子图序列中学习图的表示,以更好…
论文信息 论文标题:Graph U-Nets论文作者:Hongyang Gao, Shuiwang Ji论文来源:2019,ICML论文地址:download 论文代码:download 1 Introduction 受到类似 encoder-decoder architecture 的 U-Nets 影响,作者希望能在图数据上使用这种 pooling 和 up-sampling 的操作. Note:Encoder 一般是降维,可以看成 pooling :而 Decoder 一般是升维,可以看成…
1 简介 随着图卷积神经网络在近年来的不断发展,其对于图结构数据的建模能力愈发强大.然而现阶段的工作大多针对简单无向图或者异质图的表示学习,对图中边存在方向和类型的特殊图----多关系图(Multi-relational Graph)的建模工作较少,且大多存在着两个问题: (1)整体网络模型的过参数化, (2)仅针对于结点的表示学习. 针对这两个问题,本论文提出了一种基于组合的图卷积神经网络来同时建模结点和边的表示,为了降低大量的边类型带来的参数量,作者采用了向量分解的方式,所有的边类型表示通过…
论文信息 论文标题:Multi-view Contrastive Graph Clustering论文作者:Erlin Pan.Zhao Kang论文来源:2021, NeurIPS论文地址:download论文代码:download 1 介绍 本文贡献: 使用Graph Filter 过滤了高阶噪声数据: 提出 Graph Contrastive Regularizer 改善了视图的质量: 2 方法 2.1 定义 将多视图图数据定义为 $G=\left\{\mathcal{V}, E_{1},…
论文信息 论文标题:CGC: Contrastive Graph Clustering for Community Detection and Tracking论文作者:Namyong Park, Ryan Rossi, Eunyee Koh, Iftikhar Ahamath Burhanuddin, Sungchul Kim, Fan Du, Nesreen Ahmed, Christos Faloutsos论文来源:2022, AAAI论文地址:download 论文代码:download…
论文信息 论文标题:Towards Robust Graph Contrastive Learning论文作者:Nikola Jovanović, Zhao Meng, Lukas Faber, Roger Wattenhofer论文来源:2021, arXiv论文地址:download 论文代码:download 1 Introduction 创新点:从对抗攻击和对抗防御考虑数据增强策略. 2 Graph robust contrastive learning 2.1 Background 目…
论文信息 论文标题:Towards Deeper Graph Neural Networks论文作者:Meng Liu, Hongyang Gao, Shuiwang Ji论文来源:2020, KDD论文地址:download 论文代码:download 1 Introduction 问题引入: 图卷积是领域聚合的代表,这些邻域聚合方法中的一层只考虑近邻,当进一步深入以实现更大的接受域时,性能会下降,这种性能恶化归因于过平滑问题( over-smoothing),即当感受域增大时,在传播和更新过…
论文信息 论文标题:Simple Contrastive Graph Clustering论文作者:Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu论文来源:2022,arXiv论文地址:download 论文代码:download 1 Introduction 贡献: 提出了一种简单的对比深度图聚类方法,称为 $\text{SCGC}$.$\text{SCGC}$ 不需要预训练,并为网络训练节省时间和空间: 提出了一种新的仅在增强的属性空间中进行数据…
论文信息 论文标题:MaskGAE: Masked Graph Modeling Meets Graph Autoencoders论文作者:Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian......论文来源:2022,arXiv论文地址:download 论文代码:download 1 Introduction MAE 在图上的应用--2022 最潮的方法. 2 Related work and Motivation 2.1…
摘要:本文提出一种基于局部特征保留的图卷积网络架构,与最新的对比算法相比,该方法在多个数据集上的图分类性能得到大幅度提升,泛化性能也得到了改善. 本文分享自华为云社区<论文解读:基于局部特征保留的图卷积神经网络架构(LPD-GCN)>,原文作者:PG13 . 近些年,很多研究者开发了许多基于图卷积网络的方法用于图级表示学习和分类应用.但是,当前的图卷积网络方法无法有效地保留图的局部信息,这对于图分类任务尤其严重,因为图分类目标是根据其学习的图级表示来区分不同的图结构.为了解决该问题,这篇文章提…
CVPR2020论文解读:手绘草图卷积网络语义分割 Sketch GCN: Semantic Sketch Segmentation with Graph Convolutional Networks 论文链接:https://arxiv.org/pdf/2003.00678.pdf 摘要 介绍了一种用于手绘草图语义分割和标注的图形卷积神经网络SketchGCN.我们将输入草图视为二维点集,并将笔划结构信息编码为图形节点/边缘表示.为了预测每个点的标签,我们的SketchGCN使用图卷积和全局分…
Paper Information Titlel:<Semi-Supervised Classification with Graph Convolutional Networks>Authors:Thomas Kipf, M. WellingSource:2016, ICLRPaper:Download Code:Download 致敬  Thomas Kipf 我原以为将  GCN 发扬光大的人应该是一位老先生,毕竟能将一个理论影响全世界的人必应该有很多的知识储备(主观直觉),然后我发现自…
Gaussian field consensus论文解读及MATLAB实现 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.Introduction 论文:Wang G , Chen Y , Zheng X . Gaussian field consensus: A robust nonparametric matching method for outlier rejection[J]. Pattern Recognition, 2018,…
[论文解读] 阿里DIEN整体代码结构 目录 [论文解读] 阿里DIEN整体代码结构 0x00 摘要 0x01 文件简介 0x02 总体架构 0x03 总体代码 0x04 模型基类 4.1 基本逻辑 4.2 模块分析 4.2.1 构建变量 4.2.2 构建embedding 4.2.3 拼接embedding 0x05 Model_DIN_V2_Gru_Vec_attGru_Neg 5.1 第一层 'rnn_1' 5.1.1 GRU 5.1.2 辅助损失 5.1.3 mask的作用 Paddin…
文章转自微信公众号:[机器学习炼丹术] 参考目录: 目录 0 概述 1 主要内容 1.1 Non local的优势 1.2 pytorch复现 1.3 代码解读 1.4 论文解读 2 总结 论文名称:"Non-local Neural Networks" 论文地址:https://arxiv.org/abs/1711.07971 0 概述 首先,这个论文中的模块,叫做non-local block,然后这个思想是基于NLP中的self-attention自注意力机制的.所以在提到CV中…
CVPR2020 论文解读:具有注意RPN和多关系检测器的少点目标检测 Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector 具有注意RPN和多关系检测器的少点目标检测 目标检测的惯用方法需要大量的训练数据,准备这样高质量的训练数据很费精力的.本文中,提出一种新的少点目标检测网络,只用几个带注释的示例的看不见的类来检测目标.集中到新方法的核心是,注意力RPN,多相关检测器,以及对比训练策略,探索少点支持集…
图像分类:CVPR2020论文解读 Towards Robust Image Classification Using Sequential Attention Models 论文链接:https://arxiv.org/pdf/1912.02184.pdf 摘要 在这篇文章中,我们提出用一个受人类感知启发的注意力模型来扩充一个现代的神经网络结构.具体地说,我们对一个神经模型进行了逆向训练和分析,该模型包含了一个受人启发的视觉注意成分,由一个自上而下的循环顺序过程引导.我们的实验评估揭示了关于这个…
CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Detection 论文链接:https://arxiv.org/pdf/1912.13192.pdf 本文在LITTI数据集3D Object Detection三维目标检测性能排名第一. 摘要 提出了一种新的高性能的三维目标检测框架:点体素RCNN(PV-RCNN),用于从点云中精确检测三维目标.该方…
论文题目:<Structural Deep Network Embedding>发表时间:  KDD 2016 论文作者:  Aditya Grover;Aditya Grover; Jure Leskovec论文地址:  DownloadGithub:      Go1.Go2 ABSTRACT Motivation 由于底层网络结构复杂,Shallow model 无法捕捉高度非线性的网络结构,导致网络表示次优. 因此,如何找到一种能够有效捕捉高度非线性网络结构并保留全局和局部结构的方法是…
Paper Information Title:Convolutional Neural Networks on Graphs with Fast Localized Spectral FilteringAuthors:Michaël DefferrardXavier BressonPierre VandergheynstPaper:Download Source:NeurIPS 2016 Abstract 基于   spectral graph theory  ,为设计 localized c…