首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
手把手建立Roofline模型(CPU)
】的更多相关文章
手把手建立Roofline模型(CPU)
Roofline模型原理 Roofline模型是由加州理工大学伯利克提出的用来建立当前计算平台在不同的计算强度(Operational Intensity)下能够达到的理论计算上限 .论文和基础理论和应用 Roofline Model与深度学习模型的性能分析 .本文旨在教授如何根据当前开发环境机器建立该模型,并简单的介绍如何根据算法计算OI(计算强度). 需要准备的硬件参数 对于CPU而言,我们需要一下参数: 频率 内存带宽(double) Avx512 Unit Fma Intel Xeon…
PowerDesigner软件建立新模型。
打开PowerDesigner软件,选择菜单文件->建立新模型,或者敲击键盘ctrl+N 弹出建立新模型窗口,模型类型选择Object-Oriented Model,图选择Class Diagram,输入模型名称,例如ObjectOrientedModel_1,选择对象语言为Java,点击OK PowerDesigner会创建名称为ObjectOrientedModel_1的模型工程,在Palette面板中会列出可以操作组件符号,对于类图来说,主要使用的是Class(类),Inter…
利用libsvm-mat建立分类模型model参数解密[zz from faruto]
本帖子主要就是讲解利用libsvm-mat工具箱建立分类(回归模型)后,得到的模型model里面参数的意义都是神马?以及如果通过model得到相应模型的表达式,这里主要以分类问题为例子. 测试数据使用的是libsvm-mat自带的heart_scale.mat数据(270*13的一个属性据矩阵,共有270个样本,每个样本有13个属性),方便大家自己测试学习. 首先上一个简短的测试代码: %% ModelDecryption % by faruto @ faruto's Studio~ % htt…
图像配准建立仿射变换模型并用RANSAC算法评估
当初选方向时就由于从小几何就不好.缺乏空间想像能力才没有选择摄影測量方向而是选择了GIS. 昨天同学找我帮他做图像匹配.这我哪里懂啊,无奈我是一个别人有求于我,总是不好意思开口拒绝的人.于是乎就看着他给的一章节内容開始敲代码了,今天总算给他完毕了. 做的比較简单,中间也遇到了不少问题,尤其是计算量大的问题,由于老师给的数据是粗配准过的数据, RANSAC算法评估时就简化了下. 理论内容: 第5章 图像配准建立几何变换模型 特征点建立匹配关系之后,下一步就是求解图像之间的变换关系.仿射变换可以非常…
使用PyTorch建立图像分类模型
概述 在PyTorch中构建自己的卷积神经网络(CNN)的实践教程 我们将研究一个图像分类问题--CNN的一个经典和广泛使用的应用 我们将以实用的格式介绍深度学习概念 介绍 我被神经网络的力量和能力所吸引.在机器学习和深度学习领域,几乎每一次突破都以神经网络模型为核心. 这在计算机视觉领域尤为普遍.无论是简单的图像分类还是更高级的东西(如对象检测),神经网络开辟了处理图像数据的可能性.简而言之,对于像我这样的数据科学家来说,这是一座金矿! 当我们使用深度学习来解决一个图像分类问题时,简单的神经网…
Sequelize 类 建立数据库连接 模型定义
1:Sequelize 类 Sequelize是引用Sequelize模块获取的一个顶级对象,通过这个类可以获取模块内对其他对象的引用.比如utils.Transaction事务类.通过这个顶级对象创建实例后(连接数据库),可以使用这个实例定义模型,使用这个模型进行sql操作 1.1 创建实例 这个实例就是数据库连接对象 var sequelize = new Sequelize('database', 'username', 'password', { host: 'localhost',…
读书笔记 effective c++ Item 32 确保public继承建立“is-a”模型
1. 何为public继承的”is-a”关系 在C++面向对象准则中最重要的准则是:public继承意味着“is-a”.记住这个准则. 如果你实现一个类D(derived)public继承自类B(base),你在告诉c++编译器(也在告诉代码阅读者),每个类型D的对象也是一个类型B的对象,反过来说是不对的.你正在诉说B比D表示了一个更为一般的概念,而D比B表现了一个更为特殊的概念.你在主张:任何可以使用类型B的地方,也能使用类型D,因为每个类型D的对象都是类型B的对象:反过来却不对,也就是可以使…
『高性能模型』Roofline Model与深度学习模型的性能分析
转载自知乎:Roofline Model与深度学习模型的性能分析 在真实世界中,任何模型(例如 VGG / MobileNet 等)都必须依赖于具体的计算平台(例如CPU / GPU / ASIC 等)才能展现自己的实力.此时,模型和计算平台的"默契程度"会决定模型的实际表现.Roofline Model 提出了使用 Operational Intensity(计算强度)进行定量分析的方法,并给出了模型在计算平台上所能达到理论计算性能上限公式. 一.指标介绍 1.计算平台的两个指标:算…
Roofline Model与深度学习模型的性能分析
原文链接: https://zhuanlan.zhihu.com/p/34204282 最近在不同的计算平台上验证几种经典深度学习模型的训练和预测性能时,经常遇到模型的实际测试性能表现和自己计算出的复杂度并不完全吻合的现象,令人十分困惑.机缘巧合听了Momenta的技术分享后,我意识到问题的答案其实就在于 Roof-line Model 这个理论,于是认真研究了一下相关论文.现在把自己的心得总结出来,分享给大家. 在真实世界中,任何模型(例如 VGG / MobileNet 等)都必须依赖于具体…
黑马程序员——ARC机制总结和用ARC建立模型
ARC 全称:Automatic Reference Counting 使用ARC 只需要在建立一个新的项目的时候把 下面的√打上 Xcode5以后都会默认建议开发者使用ARC机制 新的项目中如果有部分文件不想使用ARC就 在Build Phases中找到那个文件 后面修改成-fno-objc-arc 就得项目中如果有部分文件想使用ARC就 Build Phases中找到那个文件 后面修改成-f-objc-arc 在使用了ARC开发程序中不能再出现release或者autorelease 否则就…