求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得到: answer = Σ μ(t)*⌊a'/t⌋*⌊b'/t⌋ ⌊a'/t⌋相等的是一段连续的区间, ⌊b'/t⌋同理, 而且数量是根号级别的 所以搞出μ的前缀和然后分块处理. ----------------------------------------------------------------…
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a ,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. Input 第一行包含一个正整数n,表示一共有n组询问.(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个 正整数,分别为a,b,d.…
1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status][Discuss] Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. Input 第一行包含一个正整数n,表示一共有n组询问.(1…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \((x,y)\) \(x\in [1,a],y\in [1,b]\) 满足 \(gcd(x,y)=i\) 的对数 那么答案就是 \(f(d)\) 构造一个函数 \(g(i)\) 表示 \((x,y)\) \(x\in [1,a],y\in [1,b]\) 满足 \(gcd(x,y)|i\) 的对数 于是…
1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2262  Solved: 895[Submit][Status][Discuss] Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. Input 第一行包含一个正整数n,表示一共有n组询问.(1&…
题目: http://www.lydsy.com/JudgeOnline/problem.php?id=1101 题解: http://www.cnblogs.com/mrha/p/8203612.html 数学公式太难打了,核心思想是化成gcd(i,j)==1,然后用莫比乌斯反演变成枚举约数d,然后再搞式子 #include<cstdio> #include<algorithm> #define N 50005 typedef long long ll; using namesp…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n][1,m]里gcd=k 等价于[1,n/k][1,m/k]里gcd=1 考虑求[1,n][1,m]里gcd=1 结果为sum(miu[d]*(n/d)*(m/d)) 预处理O(n^1.5) 由于n/d只有sqrt(n)种取值,所以可以预处理出miu[]的前缀和 询问时分段求和 [代码] #incl…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 #include<cstdio> #include<cstring> #include<algorithm> #define ll long long using namespace std; ; int T,n,m,D,u[N],pri[N];bool vis[N]; int rdn() { ;;char ch=getchar(); ;ch=getchar…
[题目分析] Dirichlet积+莫比乌斯函数. 对于莫比乌斯函数直接筛出处理前缀和. 对于后面向下取整的部分,可以分成sqrt(n)+sqrt(m)部分分别计算 学习了一下线性筛法. 积性函数可以在O(n)的时间内算出. [代码] #include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <map> #include <set>…
[题解]Zap(莫比乌斯反演) 裸题... 直接化吧 [P3455 POI2007]ZAP-Queries 所有除法默认向下取整 \[ \Sigma_{i=1}^x\Sigma_{j=1}^y[(i,j)=k] \\ =\Sigma_{i=1}^{x/k}\Sigma_{j=1}^{y/k}[(i,j)=1] \\ =\Sigma_{i=1}^{x/k}\Sigma_{j=1}^{y/k}\Sigma_{d|(i,j)}\mu(d) \\ =\Sigma_{d=1}^{min(x,y)}\Sig…