HDU_2046——骨牌铺放问题,递推】的更多相关文章

Problem Description 在2×n的一个长方形方格中,用一个1× 2的骨牌铺满方格,输入n ,输出铺放方案的总数. 例如n=3时,为2× 3方格,骨牌的铺放方案有三种,如下图:   Input 输入数据由多行组成,每行包含一个整数n,表示该测试实例的长方形方格的规格是2×n (0<n<=50).   Output 对于每个测试实例,请输出铺放方案的总数,每个实例的输出占一行.   Sample Input 1 3 2   Sample Output 1 3 2 #include…
http://acm.hdu.edu.cn/showproblem.php?pid=2046 和前面的一样,a[i] = a[i-1] + a[i-2] #include<iostream> #include<cmath> #include<algorithm> using namespace std; int main() { int n; while(cin>>n && n) { ]; a[] = ; a[] = ; a[] = ; ;i…
题目链接:http://poj.org/problem?id=1664 dp[i][j]表示i个盘放j个苹果的方案数,dp[i][j] 可以由 dp[i - 1][j] 和 dp[i][j - i] 递推而来. 当盘子的个数大于等于苹果的个数: dp[i - 1][j] :i - 1个盘子放j个苹果,说明i个盘子里最少有一个盘子是空的 dp[i][j - i] :i个盘子都放了苹果,说明有j - i个苹果是随便放置的 否则: dp[i][j] = dp[i - 1][j] 然后没有苹果的盘子的方…
[题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘.对于这个棋盘,一共有多少种不同的覆盖方法呢? 举个例子,对于长度为1到3的棋盘,我们有下面几种覆盖方式: 提示:骨牌覆盖 提示:如何快速计算结果 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个整数,表示覆盖方案数 M…
题目链接 题意 用\(1\times 2\)的骨牌铺满\(H\times W(H,W\leq 11)\)的网格,问方案数. 思路 参考focus_best. 竖着的骨牌用\(\begin{pmatrix}0\\1\end{pmatrix}\)表示,横着的骨牌用\(\begin{pmatrix}1&1\end{pmatrix}\)表示. 则对于第\(i\)行,与之相容的第\(i-1\)行的状态需满足: 第\(i\)行是0的位置,第\(i-1\)行必须是1: 第\(i\)行是1的位置,第\(i-1\…
Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and r…
把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法. Input 第一行是测试数据的数目t(0 <= t <= 20).以下每行均包含二个整数M和N,以空格分开.1<=M,N<=10. Output 对输入的每组数据M和N,用一行输出相应的K. Sample Input 1 7 3 Sample Output 8 题解+代码: 1 /* 2 这道题两种做法,一种dfs,一种递推.这里用的递推法(递推法…
原题链接:http://poj.org/problem?id=1664 思路:苹果m个,盘子n个.假设 f ( m , n ) 代表 m 个苹果,n个盘子有 f ( m , n ) 种放法. 根据 n 和 m 的关系可以进一步分析: 特殊的 n = 1 || m = 1 || n = 0 时只有一种方法 当 m < n时,即使苹果每个盘子放一个也没法放满所有盘子,题目允许有的盘子空着不放,所以我们可以将空盘子去掉,即 f ( m , n ) = f ( m , m ) 当 m >= n时,这时…
题目链接:http://hihocoder.com/problemset/problem/1143 这个递推还是很经典的,结果是斐波那契数列.f(i) = f(i-1) + f(i-2).数据范围太大了,应该用快速幂加速下. /* ━━━━━┒ギリギリ♂ eye! ┓┏┓┏┓┃キリキリ♂ mind! ┛┗┛┗┛┃\○/ ┓┏┓┏┓┃ / ┛┗┛┗┛┃ノ) ┓┏┓┏┓┃ ┛┗┛┗┛┃ ┓┏┓┏┓┃ ┛┗┛┗┛┃ ┓┏┓┏┓┃ ┛┗┛┗┛┃ ┓┏┓┏┓┃ ┃┃┃┃┃┃ ┻┻┻┻┻┻ */ #incl…
骨牌铺方格 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 22438    Accepted Submission(s): 10828 Problem Description在2×n的一个长方形方格中,用一个1× 2的骨牌铺满方格,输入n ,输出铺放方案的总数.例如n=3时,为2× 3方格,骨牌的铺放方案有三种,如下图: Input输入…