清北学堂提高突破营游记day1】的更多相关文章

上午7点半到的国防宾馆,8点开始的培训. 讲课人林永迪. 没错就是这个人: 他推荐的教辅:刘汝佳紫书,算法导论(也就看看..),刘汝佳白书 先讲模拟.(貌似就是看题论题. 然后贪心. 贪心没有固定的模板,他是一种思想... 一道例题链接(USACO 然后是线段覆盖和区间覆盖 会场安排问题,也是最经典线段覆盖的问题: 然后是经典区间覆盖问题: 喷水装置 [题目描述] 长 LL 米,宽 WW 米的草坪里装有 nn 个浇灌喷头.每个喷头都装在草坪中心线上(离两边各 W2W2 米).我们知道每个喷头的位…
先水了一下昨天没讲完的贪心. 然后今天讲的分治. 安利自己水的二分与三分. 二分一定要满足有序.三分适合解决单峰函数问题. 第一道题借教室.运用差分和二分查找. 三分: P1731 [NOI1999]生日蛋糕 p1903国家集训队数颜色/维护队列 高精度除法: 还有一个lyd的秘技:高精度开方. 然后是矩阵乘法,矩阵快速幂,高斯消元. 然后是欧拉大作:欧拉筛(线性筛),埃拉托斯特尼筛法. 积性函数.莫比乌斯函数. 快速gcd算法. a*和ida*神仙算法(完全不懂. exgcd与逆元. 中国剩余…
讲课人: 老师对dp的理解是类似于分治思想,由小状态推出大状态.不同的是分治算法没有重叠子问题. dp把子问题越划越小,从而推出了基础状态.然后是dp方程,要满足简洁性,并且充分描述能够影响最后结果的条件. 转移?zhx:从小问题推到大问题就是转移. 原题链接:. 思路:先把挂钩数量排个序 这个题和导弹拦截差不多,你对l进行从大到小排序,那么文题就变成了求最长不上升子序列的个数,也就是最长上升子序列的长度. n^2做法. 先想n^4做法,然后一步一步优化. 来道水题. 上午完结. 下午: 序列d…
xysq主讲: 求点双和边双代码: 对所有点进行染色,如果存在一种方案使得相邻的点不同色,那么他就是个二分图. 二分图两种求法,1,dfs求增广路. 2,网络流:最大流=最小割 差分约束: 下午又要考试了..... 爆零辣!…
ysq主讲: tarjan缩点+拓扑+dij最短路. floyd..... 单源..最长路... 建正反两个图. 二分答案,把大于答案的边加入到新图中,如果能走过去到终点,就可以. 或者:从大到小加边,(最大生成树),一直加到第一次能连通,就终止. 再或者:跑dij,把缩点的操作改为取min. prim: 代码: 正确性: kruskal: 拟阵: 拟阵来证正确性. 树上倍增求lca和序列倍增: 树链剖分:重儿子与轻边,需要两边dfs,第一次确定重儿子,第二次剖分树链. 树链剖分lca: 树链剖…
依然zhx讲. 讲了概率与期望: 期望:事件结果的平均大小.记作E(x). E(x)=每种结果的大小与其概率的乘积的和. 例如,记掷一枚骰子的点数为x E(x)=1*(1/6)+2*(1/6)+3*(1/6)+4*(1/6)+5*(1/6)+6*(1/6)=7/2 若c为常数,那么: E(x+c)=E(x)+c,E(c*x)=c*E(x). 如果记两个事件的结果分别为x,y,那么他们自然满足以下性质: E(x+y)=E(x)+E(y) 例如:E(语文成绩+数学成绩)=E(语文成绩)+E(数学成绩…
.状态压缩dp: 对于这个我们引入二进制状态压缩,因为任何一个数都可以二进制表示,而其二进制表示上每一位都可以表示当前位置是否有元素,这就构成了状态压缩. 对于这个题,上下行&一下就行. 状压: 判断是否被攻击到:当前直接&,左移一下并&,右移一下并& 位运算的小技巧: 枚举s的子集: dp的优化: 看着就像单调队列QWQ.…
上午讲数位dp和背包问题. 先讲背包: 完全背包:换了个顺序: 多重背包: 多重背包优化: 这样把每个物品分成这些组,那么把他们转变成不同的物品,就变成了01背包问题: 滑动窗口取最值问题.单调队列优化. 方法很简单,枚举每一组中的其中一个物品计算即可. 小技巧: 有些懵... : 终于,到了数位dp环节:(恶心了一上午.) dp方法: 判断上界. 假如我们要枚举到2147,当前已经枚举到了第二位,如果枚举到了1,那么我们说他达到了上界,下一位只能从0枚举到4.如果这一位是0,由于不管下一位是多…
讲课人更换成dms. 真的今天快把我们逼疯了.. 今天主攻数据结构, 基本上看完我博客能理解个大概把, 1.LCA 安利之前个人博客链接.之前自己学过QWQ. 2.st表.同上. 3.字符串哈希.同上. (貌似我好像都学过的样子.不过dms讲的是真的好,声情并茂) 4,并查集.同上. 5,树状数组,同上. 6,线段树,同上. 树状数组主要出现形式:逆序对,二位偏序,多个树状数组. 然后讲了一下午树状数组,线段树. 晚上讲splay... 到了晚上,然而并没有听懂什么,,只是看着dms打代码发呆,…
还有一天就结束了..QWQ 好快啊. 昨天没讲完的博弈论DP: 一个标准的博弈论dp,一般问的是是否先手赢. 博弈论最关键的问题:dp过程. 对于一个问题,一定有很多状态,每个状态可以转移到其他的一些状态.如果存在一个状态,且不能转移到其他状态,那么我们设这个状态为必败态,那么他相邻的能够转移到必败态的状态因为只有一种转移方式,那么一定为必胜态,(假设操作双方选手绝顶聪明,每一步都朝着最优状态走),如此这样交替下去,推到开始状态,就可以判断了. 怎么转换? 对于一个节点以及他所有子节点来讲,如果…